LNA derivatives of a kissing aptamer targeted to the trans-activating responsive RNA element of HIV-1.

[1]  Ignacio Tinoco,et al.  Unusual mechanical stability of a minimal RNA kissing complex , 2006, Proceedings of the National Academy of Sciences.

[2]  C. Di Primo,et al.  Aptamers targeted to an RNA hairpin show improved specificity compared to that of complementary oligonucleotides. , 2006, Biochemistry.

[3]  Deepak Bhatnagar,et al.  Promising nucleic acid analogs and mimics: characteristic features and applications of PNA, LNA, and morpholino , 2006, Applied Microbiology and Biotechnology.

[4]  G. Palù,et al.  Inhibitors of HIV-1 Tat-mediated transactivation. , 2006, Current medicinal chemistry.

[5]  J. Toulmé,et al.  Hexitol nucleic acid-containing aptamers are efficient ligands of HIV-1 TAR RNA. , 2005, Biochemistry.

[6]  B. Peterlin,et al.  A New Paradigm in Eukaryotic Biology: HIV Tat and the Control of Transcriptional Elongation , 2005, PLoS biology.

[7]  C. Wahlestedt,et al.  Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality , 2005, Nucleic acids research.

[8]  J. Wengel,et al.  LNA (locked nucleic acid): high-affinity targeting of complementary RNA and DNA. , 2004, Biochemistry.

[9]  J. Wengel,et al.  Locked nucleic acid: a potent nucleic acid analog in therapeutics and biotechnology. , 2004, Oligonucleotides.

[10]  S. Douthwaite,et al.  Improved RNA cleavage by LNAzyme derivatives of DNAzymes. , 2004, Biochemical Society transactions.

[11]  C. Di Primo,et al.  Molecular dynamics reveals the stabilizing role of loop closing residues in kissing interactions: comparison between TAR-TAR* and TAR-aptamer. , 2003, Nucleic acids research.

[12]  C. Di Primo,et al.  2'-O-methyl-RNA hairpins generate loop-loop complexes and selectively inhibit HIV-1 Tat-mediated transcription. , 2002, Biochemistry.

[13]  C. Di Primo,et al.  Loop–loop interaction of HIV-1 TAR RNA with N3′ → P5′ deoxyphosphoramidate aptamers inhibits in vitro Tat-mediated transcription , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Michael Petersen,et al.  Locked nucleic acid (LNA) recognition of RNA: NMR solution structures of LNA:RNA hybrids. , 2002, Journal of the American Chemical Society.

[15]  J. Wengel,et al.  NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS, 20(4–7), 389–396 (2001) LNA (LOCKED NUCLEIC ACID) AND THE DIASTEREOISOMERIC α-L-LNA: CONFORMATIONAL TUNING AND HIGH-AFFINITY RECOGNITION OF DNA/RNA TARGETS , 2003 .

[16]  M. Egli,et al.  Synthetic oligonucleotides as RNA mimetics: 2′-modified RNAs and N3′→P5′ phosphoramidates , 2000, Cellular and Molecular Life Sciences CMLS.

[17]  J. Wengel,et al.  Structural studies of LNA:RNA duplexes by NMR: conformations and implications for RNase H activity. , 2000, Chemistry.

[18]  A. Shilatifard,et al.  Control of elongation by RNA polymerase II. , 2000, Trends in biochemical sciences.

[19]  F. Ducongé,et al.  Is a Closing “GA Pair” a Rule for Stable Loop-Loop RNA Complexes?* , 2000, The Journal of Biological Chemistry.

[20]  F. Ducongé,et al.  In vitro selection identifies key determinants for loop-loop interactions: RNA aptamers selective for the TAR RNA element of HIV-1. , 1999, RNA.

[21]  D. Crothers,et al.  Characterization of the solution conformations of unbound and Tat peptide-bound forms of HIV-1 TAR RNA. , 1999, Biochemistry.

[22]  J. Toulmé,et al.  DNA Aptamers Selected Against the HIV-1trans-Activation-responsive RNA Element Form RNA-DNA Kissing Complexes* , 1999, The Journal of Biological Chemistry.

[23]  D. Crothers,et al.  The solution structure of an RNA loop-loop complex: the ColE1 inverted loop sequence. , 1998, Structure.

[24]  J. Wengel,et al.  Synthesis of Novel Bicyclo[2.2.1] Ribonucleosides: 2'-Amino- and 2'-Thio-LNA Monomeric Nucleosides. , 1998, The Journal of organic chemistry.

[25]  I. Tinoco,et al.  The structure of an RNA "kissing" hairpin complex of the HIV TAR hairpin loop and its complement. , 1997, Journal of molecular biology.

[26]  J. Karn,et al.  High affinity binding of TAR RNA by the human immunodeficiency virus type-1 tat protein requires base-pairs in the RNA stem and amino acid residues flanking the basic region. , 1993, Journal of molecular biology.

[27]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[28]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[29]  S. Kauppinen,et al.  Locked Nucleic Acid: High-Affinity Targeting of Complementary RNA for RNomics , 2006, Handbook of experimental pharmacology.

[30]  C. Di Primo,et al.  LNA/DNA chimeric oligomers mimic RNA aptamers targeted to the TAR RNA element of HIV-1. , 2004, Nucleic Acids Research.

[31]  C. Di Primo,et al.  Modulation of RNA function by oligonucleotides recognizing RNA structure. , 2001, Progress in nucleic acid research and molecular biology.

[32]  J. Wengel,et al.  The conformations of locked nucleic acids (LNA) , 2000, Journal of molecular recognition : JMR.