Methodologies of control strategies for improving energy efficiency in agricultural greenhouses

[1]  A. Gosselin,et al.  Effect of covering materials on energy consumption and greenhouse microclimate , 1996 .

[2]  D. J. Wilkinson,et al.  A REAL-TIME OPTIMAL CONTROL ALGORITHM FOR GREENHOUSE HEATING , 1996 .

[3]  António E. Ruano,et al.  Real-Time Parameter Estimation of Dynamic Temperature Models for Greenhouse Environmental Control , 1997 .

[4]  H. Tantau Energy saving potential of greenhouse climate control , 1997 .

[5]  Luigi Fortuna,et al.  A fuzzy approach to greenhouse climate control , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[6]  Nick Sigrimis,et al.  Energy saving in greenhouses using temperature integration: a simulation survey , 2000 .

[7]  Konstantinos G. Arvanitis,et al.  Multirate adaptive temperature control of greenhouses , 2000 .

[8]  Luigi Fortuna,et al.  Soft computing for greenhouse climate control , 2000, IEEE Trans. Fuzzy Syst..

[9]  Sebastián Dormido,et al.  MODELLING AND SIMULATION OF GREENHOUSE CLIMATE USING DYMOLA , 2002 .

[10]  M. Berenguel,et al.  Adaptive control strategies for greenhouse temperature control , 2003, 2003 European Control Conference (ECC).

[11]  Konstantinos G. Arvanitis,et al.  A nonlinear feedback technique for greenhouse environmental control , 2003 .

[12]  Eduardo F. Camacho,et al.  Constrained predictive control of a greenhouse , 2005 .

[13]  J. Boaventura Cunha,et al.  Greenhouse air temperature predictive control using the particle swarm optimisation algorithm , 2005 .

[14]  H.-J. Tantau,et al.  Non-linear constrained MPC: Real-time implementation of greenhouse air temperature control , 2005 .

[15]  Fang Xu,et al.  Self-tuning Fuzzy Logic Control of Greenhouse Temperature using Real-coded Genetic Algorithm , 2006, 2006 9th International Conference on Control, Automation, Robotics and Vision.

[16]  A. Rojano,et al.  A Neural Network Model to Control Greenhouse Environment , 2007, 2007 Sixth Mexican International Conference on Artificial Intelligence, Special Session (MICAI).

[17]  Xavier Blasco,et al.  Model-based predictive control of greenhouse climate for reducing energy and water consumption , 2007 .

[18]  Erik D. Goodman,et al.  A compatible energy-saving control algorithm for a class of conflicted multi-objective control problem , 2007, 2007 IEEE Congress on Evolutionary Computation.

[19]  Afif Hasan,et al.  Modeling of greenhouse with PCM energy storage , 2008 .

[20]  António E. Ruano,et al.  Discrete Model-Based Greenhouse Environmental Control using the Branch & Bound Algorithm , 2008 .

[21]  Francisco Rodríguez,et al.  Adaptive hierarchical control of greenhouse crop production , 2008 .

[22]  M. Djevic,et al.  Energy consumption for different greenhouse constructions , 2008 .

[23]  Lihong Xu,et al.  Energy-saving control of greenhouse climate based on MOCC strategy , 2009, GEC '09.

[24]  J. Ríos-Moreno,et al.  Greenhouse energy consumption prediction using neural networks models , 2009 .

[25]  E. J. van Henten,et al.  Time-scale decomposition of an optimal control problem in greenhouse climate management , 2009 .

[26]  Francisco Rodríguez,et al.  Diurnal greenhouse temperature control with predictive control and online constrains mapping , 2010 .

[27]  Yan Luo,et al.  Model predictive control based on particle swarm optimization of greenhouse climate for saving energy consumption , 2010, 2010 World Automation Congress.

[28]  E. J. van Henten,et al.  Optimal greenhouse cultivation control: survey and perspectives , 2010 .

[29]  Mohammad Reza Yousefi,et al.  A hybrid neuro-fuzzy approach for greenhouse climate modeling , 2010, 2010 5th IEEE International Conference Intelligent Systems.

[30]  Lihong Xu,et al.  Nonlinear adaptive Neuro-PID controller design for greenhouse environment based on RBF network , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[31]  Shen Yue,et al.  A Greenhouse Temperature and Humidity Controller Based on MIMO Fuzzy System , 2010, 2010 International Conference on Intelligent System Design and Engineering Application.

[32]  Lihong Xu,et al.  A Compatible Control Algorithm for Greenhouse Environment Control Based on MOCC Strategy , 2011, Sensors.

[33]  Raphael Linker,et al.  Robust climate control of a greenhouse equipped with variable-speed fans and a variable-pressure fogging system , 2011 .

[34]  Francisco Rodríguez,et al.  Predictive Control with Disturbance Forecasting for Greenhouse Diurnal Temperature Control , 2011 .

[35]  Sung-Eon Cho,et al.  A Study on Greenhouse Automatic Control System Based on Wireless Sensor Network , 2011, Wirel. Pers. Commun..

[36]  Francisco Rodríguez,et al.  Nonlinear MPC based on a Volterra series model for greenhouse temperature control using natural ventilation , 2011 .

[37]  E. V. Henten,et al.  The effect of sensor errors on production and energy consumption in greenhouse horticulture , 2011 .

[38]  Diane Bastien,et al.  A Control Algorithm for Optimal Energy Performance of a Solarium/Greenhouse with Combined Interior and Exterior Motorized Shading☆ , 2012 .

[39]  Erik D. Goodman,et al.  NSGA-II-based nonlinear PID controller tuning of greenhouse climate for reducing costs and improving performances , 2012, Neural Computing and Applications.

[40]  E. Fitz-Rodríguez,et al.  Simulated performance of a greenhouse cooling control strategy with natural ventilation and fog cooling , 2012 .

[41]  Guanghui Li,et al.  Nonlinear Adaptive PID Control for Greenhouse Environment Based on RBF Network , 2012, Sensors.

[42]  H. Griepentrog,et al.  Multivariable greenhouse climate control using dynamic decoupling controllers , 2013 .

[43]  Lin Feng,et al.  Tuning the PID parameters for greenhouse control based on CFD simulation , 2013, 2013 Second International Conference on Agro-Geoinformatics (Agro-Geoinformatics).

[44]  Amir Vadiee,et al.  Energy management strategies for commercial greenhouses , 2014 .

[45]  Gheorghe-Daniel Andreescu,et al.  Comparison of modified Smith predictor and PID controller tuned by genetic algorithms for greenhouse climate control , 2014, 2014 IEEE 9th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI).

[46]  E. Aguilera,et al.  Embodied energy in agricultural inputs. Incorporating a historical perspective , 2015 .

[47]  G. Straten,et al.  Optimal control of greenhouse climate using minimal energy and grower defined bounds , 2015 .

[48]  Zheng Shen,et al.  A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model , 2015 .

[49]  Kostas Komnitsas,et al.  Life cycle assessment of open field and greenhouse cultivation of lettuce and barley , 2015 .

[50]  E. J. van Henten,et al.  Minimal heating and cooling in a modern rose greenhouse , 2015 .

[51]  Mouna Boughamsa,et al.  Multiscale fuzzy model-based short term predictive control of greenhouse microclimate , 2015, 2015 IEEE 13th International Conference on Industrial Informatics (INDIN).

[52]  Abdelkader Mami,et al.  Fuzzy Decoupling Control of Greenhouse Climate , 2015 .

[53]  D. Piscia,et al.  A method of coupling CFD and energy balance simulations to study humidity control in unheated greenhouses , 2015, Comput. Electron. Agric..

[54]  Lihong Xu,et al.  A greenhouse climate model for control design , 2015, 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC).

[55]  A. Mami,et al.  Fuzzy logic controller of temperature and humidity inside an agricultural greenhouse , 2016, 2016 7th International Renewable Energy Congress (IREC).

[56]  Jean-François Balmat,et al.  Temperature control in a MISO greenhouse by inverting its fuzzy model , 2016, Comput. Electron. Agric..

[57]  Rajesh Kumar,et al.  Receding horizon based greenhouse air temperature control using grey wolf optimization algorithm , 2016, 2016 IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering (UPCON).

[58]  Jorge Antonio Sánchez-Molina,et al.  Bayesian networks for greenhouse temperature control , 2016, J. Appl. Log..

[59]  Toru Yamamoto,et al.  A novel approach in designing PID controllers using closed-loop data , 2016, 2016 American Control Conference (ACC).

[60]  Lihong Xu,et al.  Adaptive Fuzzy Control of a Class of MIMO Nonlinear System With Actuator Saturation for Greenhouse Climate Control Problem , 2016, IEEE Transactions on Automation Science and Engineering.

[61]  Jorge Antonio Sánchez-Molina,et al.  A hybrid-controlled approach for maintaining nocturnal greenhouse temperature: Simulation study , 2016, Comput. Electron. Agric..

[62]  Fang Xu,et al.  Energy demand forecasting of the greenhouses using nonlinear models based on model optimized prediction method , 2016, Neurocomputing.

[63]  S. Revathi,et al.  Fuzzy Based Temperature Control of Greenhouse , 2016 .

[64]  M Azaza,et al.  Smart greenhouse fuzzy logic based control system enhanced with wireless data monitoring. , 2016, ISA transactions.

[65]  Doaa M. Atia,et al.  Analysis and design of greenhouse temperature control using adaptive neuro-fuzzy inference system , 2017 .

[66]  Antonio Messineo,et al.  An Innovative Adaptive Control System to Regulate Microclimatic Conditions in a Greenhouse , 2017 .

[67]  Sedat Boyaci,et al.  Control of Greenhouse Environmental Conditions with IOT Based Monitoring and Analysis System , 2017 .

[68]  Mahdi Heidari,et al.  Climate control of an agricultural greenhouse by using fuzzy logic self-tuning PID approach , 2017, 2017 23rd International Conference on Automation and Computing (ICAC).

[69]  J. F. Pan,et al.  Design and application of intelligent control system for greenhouse environment , 2017, 2017 7th International Conference on Power Electronics Systems and Applications - Smart Mobility, Power Transfer & Security (PESA).

[70]  Simone Pascuzzi,et al.  Thermal energy assessment of a small scale photovoltaic, hydrogen and geothermal stand-alone system for greenhouse heating , 2017 .

[71]  E. Goto,et al.  Development of a greenhouse simulation model to estimate energy and resources necessary for environmental controls under various climate conditions , 2017 .

[72]  Erik D. Goodman,et al.  Greenhouse climate fuzzy adaptive control considering energy saving , 2017 .

[73]  Jian Zhao,et al.  Research on Drowsy-driving Monitoring and Warning System Based on Multi-feature Comprehensive Evaluation , 2018 .

[74]  He Yaofeng,et al.  Greenhouse modelling and control based on T-S model , 2018 .

[75]  Haihui Zhang,et al.  An adaptive fuzzy hierarchical control for maintaining solar greenhouse temperature , 2018, Comput. Electron. Agric..

[76]  Lihong Xu,et al.  Energy Consumption Prediction of a Greenhouse and Optimization of Daily Average Temperature , 2018 .

[77]  Raghad Alhusari,et al.  Temperature Control of MIMO System by Utilizing Ground Temperature and Weather Conditions , 2018, 2018 IEEE Electrical Power and Energy Conference (EPEC).

[78]  Xu Dan,et al.  Robust model predictive control for greenhouse temperature based on particle swarm optimization , 2018, Information Processing in Agriculture.

[79]  Liang Meihui,et al.  Greenhouse temperature predictive control for energy saving using switch actuators , 2018 .

[80]  Nofri Yenita Dahlan,et al.  Automated Calibration Of Greenhouse Energy Model Using Hybrid Evolutionary Programming (EP)-Energy Plus , 2018, Indonesian Journal of Electrical Engineering and Computer Science.

[81]  G. Aiello,et al.  A decision support system based on multisensor data fusion for sustainable greenhouse management , 2018 .

[82]  Wang Xiaowen,et al.  Design of Temperature and Humidity Control System in Agricultural Greenhouse based on Single Neuron PID , 2018, Proceedings of the International Symposium on Big Data and Artificial Intelligence.

[83]  Liang Meihui,et al.  Linear Quadratic Optimal Control Applied to the Greenhouse Temperature Hierarchal System , 2018 .

[84]  Mouna Boughamsa,et al.  Adaptive fuzzy control strategy for greenhouse micro-climate , 2018, Int. J. Autom. Control..

[85]  Liang Meihui,et al.  Adaptive Feedback Linearization-based Predictive Control for Greenhouse Temperature , 2018 .

[86]  Gopal Chaudhary,et al.  Observer based fuzzy and PID controlled smart greenhouse , 2019, Journal of Statistics and Management Systems.

[87]  K. Sudhakar,et al.  Modelling of a solar desiccant cooling system using a TRNSYS-MATLAB co-simulator: A review , 2019, Journal of Building Engineering.

[88]  J. D. Gil,et al.  Optimal thermal energy management of a distributed energy system comprising a solar membrane distillation plant and a greenhouse , 2019, Energy Conversion and Management.

[89]  F. Tadeo,et al.  Greenhouse Modeling, Validation and Climate Control based on Fuzzy Logic , 2019, Engineering, Technology & Applied Science Research.

[90]  Tanzeel U. Rehman,et al.  Greenhouse environment modeling and simulation for microclimate control , 2019, Comput. Electron. Agric..

[91]  A. Guizani,et al.  Autonomous greenhouse microclimate through hydroponic design and refurbished thermal energy by phase change material , 2019, Journal of Cleaner Production.

[92]  Dan Xu,et al.  Double closed-loop optimal control of greenhouse cultivation , 2019, Control Engineering Practice.

[93]  Zetian Fu,et al.  Precise measurements and control of the position of the rolling shutter and rolling film in a solar greenhouse , 2019, Journal of Cleaner Production.

[94]  S. Ahamed,et al.  Energy saving techniques for reducing the heating cost of conventional greenhouses , 2019, Biosystems Engineering.

[95]  Chengwei Ma,et al.  Performance of a water-circulating solar heat collection and release system for greenhouse heating using an indoor collector constructed of hollow polycarbonate sheets , 2020 .