Image phenotyping of inbred red lettuce lines with genetic diversity regarding carotenoid levels

Abstract Developing biofortified foods is a goal of genetic breeding programs. However, analysis costs and the time required for leaf sampling in the field are hindrances to this process. The objectives of this study were to evaluate the genetic diversity in red leaf lettuce germplasm and to evaluate the use of image phenotyping for the identification of carotenoid-rich genotypes. The experiment was carried out in 2018 at the Vegetable Experiment Station of the Federal University of Uberlândia-Monte Carmelo campus. Thirty inbred lines of red leaf lettuce were evaluated. All inbred lines resulted from the hybridization of the Belissima and Uberlândia 10000 cultivars and six successive selfings, carried out from 2013 to 2017. The genealogical method or pedigree is a working procedure used by plant breeders working with plant species whose reproductive system is autogamous and presenting cleistogamy. This method was used to obtain the treatments of the experiment. The cultivar Belissima (red lettuce) was used as a control, totaling 31 treatments. A conventional method and an aerial image phenotyping using Phantom 4 unmanned aerial vehicle (UAV) were used to evaluate six different agronomic characteristics and carotenoid levels of each treatment. The results showed substantial genetic diversity within the germplasm bank. Furthermore, high performance image phenotyping was highly correlated with the traditional methodology (r = -0.8732, coefficient of determination = 76.25%) and can therefore be considered an alternative for identifying different genetic backgrounds within a germplasm bank. Unmanned aerial vehicle (UAV) might also be used to monitor biofortification levels in crops.

[1]  G. Menexes,et al.  Assessment of Vegetation Indices Derived by UAV Imagery for Durum Wheat Phenotyping under a Water Limited and Heat Stressed Mediterranean Environment , 2017, Front. Plant Sci..

[2]  S. S. Júnior,et al.  Resistência ao pendoamento de genótipos de alface em ambientes de cultivo , 2009 .

[3]  L. Gomes,et al.  β-CAROTENE AND CHLOROPHYLL LEVELS IN CULTIVARS AND BREEDING LINES OF LETTUCE , 2015 .

[4]  Urs Schmidhalter,et al.  Digital Counts of Maize Plants by Unmanned Aerial Vehicles (UAVs) , 2017, Remote. Sens..

[5]  Zhang Yz,et al.  Transcriptome analysis and anthocyanin-related genes in red leaf lettuce. , 2016 .

[6]  Cosme Damião Cruz,et al.  GENES - a software package for analysis in experimental statistics and quantitative genetics - doi: 10.4025/actasciagron.v35i3.21251 , 2013 .

[7]  V. C. A. Theodoro,et al.  Desempenho de cultivares de alface tipo crespa sob altas temperaturas em Cáceres-MT , 2009 .

[8]  Christine Becker,et al.  Nitrogen Limited Red and Green Leaf Lettuce Accumulate Flavonoid Glycosides, Caffeic Acid Derivatives, and Sucrose while Losing Chlorophylls, Β-Carotene and Xanthophylls , 2015, PloS one.

[9]  Graeme L. Hammer,et al.  Multi-Spectral Imaging from an Unmanned Aerial Vehicle Enables the Assessment of Seasonal Leaf Area Dynamics of Sorghum Breeding Lines , 2017, Front. Plant Sci..

[10]  P. Zarco-Tejada,et al.  Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize , 2015, Plant Methods.

[11]  C. Zucareli,et al.  Produção de cultivares de alface americana sob dois sistemas de cultivo , 2017 .

[12]  R. Sakai,et al.  Univariate and multivariate procedures for agronomic evaluation of organically grown tomato cultivars , 2016 .

[13]  D. Inzé,et al.  Cell to whole-plant phenotyping: the best is yet to come. , 2013, Trends in plant science.

[14]  N. Mantel The detection of disease clustering and a generalized regression approach. , 1967, Cancer research.

[15]  T. J. C. Amado,et al.  Análise de componentes principais de atributos químicos e físicos do solo limitantes à produtividade de grãos , 2012 .

[16]  Warwick Estevam Kerr,et al.  Divergncia gentica entre gentipos de alface por meio de marcadores AFLP , 2007 .

[17]  Jill E. Cairns,et al.  High-Throughput Phenotyping of Canopy Cover and Senescence in Maize Field Trials Using Aerial Digital Canopy Imaging , 2018, Remote. Sens..

[18]  Edson Eyji Sano,et al.  Effect of sugarcane-planting row directions on ALOS/PALSAR satellite images , 2013 .

[19]  F. C. Sala,et al.  Retrospectiva e tendência da alfacicultura brasileira , 2012 .

[20]  F. C. Sala,et al.  Reação de cultivares de alface a Thielaviopsis basicola , 2008 .

[21]  Marcos Adami,et al.  Índices de vegetação Modis aplicados na discriminação de áreas de soja , 2012 .

[22]  R. T. Fernandez,et al.  Growth and physiology of deciduous shade trees in response to controlled-release fertilizer , 2012 .

[23]  R. Dallacort,et al.  Produção e resistência ao pendoamento de alfaces tipo lisa cultivadas sob diferentes ambientes , 2013 .

[24]  V. Böhm,et al.  Carotenoids: actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. , 2009, Molecular nutrition & food research.

[25]  A. Walter,et al.  Plant phenotyping: from bean weighing to image analysis , 2015, Plant Methods.

[26]  Daljit Singh The Relative Importance of Characters Affecting Genetic Divergence , 1981 .

[27]  P. Zarco-Tejada,et al.  A Novel Remote Sensing Approach for Prediction of Maize Yield Under Different Conditions of Nitrogen Fertilization , 2016, Front. Plant Sci..

[28]  Hao Yang,et al.  Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives , 2017, Front. Plant Sci..

[29]  Adriano Rolim da Paz,et al.  Estimativa de área agrícola por meio de séries temporais Modis NDVI no Estado do Mato Grosso , 2012 .

[30]  D. Rodriguez-Amaya,et al.  A scheme for obtaining standards and HPLC quantification of leafy vegetable carotenoids , 2002 .

[31]  Yasuomi Ibaraki,et al.  Development of a digital image analysis method for real-time estimation of chlorophyll content in micropropagated potato plants , 2012, Plant Biotechnology Reports.

[32]  W. Krause,et al.  Desempenho agronômico de alface americana fertilizada com torta de filtro em ambiente protegido , 2013 .

[33]  R. Dallacort,et al.  Production and resistance to bolting of loose-leaf lettuce grown in different environments , 2013 .

[34]  D. Bolonhezi,et al.  Desempenho de cultivares de alface crespa em dois ambientes de cultivo em sistema hidropônico , 2011 .

[35]  Danielly Santos Rocha,et al.  Pigmentos Naturais em Alimentos e sua Importância para a Saúde , 2014 .

[36]  P. C. Conceição,et al.  Cultivo de alface em diferentes manejos de cobertura do solo e fontes de adubação , 2014 .

[37]  Elisângela Clarete Camili,et al.  Produção e tolerância ao pendoamento de alface-romana em diferentes ambientes , 2014 .

[38]  L. E. Vicente,et al.  Séries temporais de NDVI do sensor SPOT Vegetation e algoritmo SAM aplicados ao mapeamento de cana‑de‑açúcar , 2012 .

[39]  K. Solhaug,et al.  Effect of Irradiance on Chlorophyll Estimation with the Minolta SPAD-502 Leaf Chlorophyll Meter , 1998 .

[40]  J. A. Johann,et al.  Estimativa de áreas com culturas de verão no Paraná, por meio de imagens multitemporais EVI/Modis , 2012 .