Image phenotyping of inbred red lettuce lines with genetic diversity regarding carotenoid levels
暂无分享,去创建一个
Ricardo Luis Barbosa | Gabriel Mascarenhas Maciel | Rodrigo Bezerra de Araújo Gallis | Lucas Medeiros Pereira | Ana Carolina Silva Siquieroli | Joicy Vitória Miranda Peixoto | A. Siquieroli | G. Maciel | Ricardo Luís Barbosa | R. Gallis | L. M. Pereira | J. Peixoto
[1] G. Menexes,et al. Assessment of Vegetation Indices Derived by UAV Imagery for Durum Wheat Phenotyping under a Water Limited and Heat Stressed Mediterranean Environment , 2017, Front. Plant Sci..
[2] S. S. Júnior,et al. Resistência ao pendoamento de genótipos de alface em ambientes de cultivo , 2009 .
[3] L. Gomes,et al. β-CAROTENE AND CHLOROPHYLL LEVELS IN CULTIVARS AND BREEDING LINES OF LETTUCE , 2015 .
[4] Urs Schmidhalter,et al. Digital Counts of Maize Plants by Unmanned Aerial Vehicles (UAVs) , 2017, Remote. Sens..
[5] Zhang Yz,et al. Transcriptome analysis and anthocyanin-related genes in red leaf lettuce. , 2016 .
[6] Cosme Damião Cruz,et al. GENES - a software package for analysis in experimental statistics and quantitative genetics - doi: 10.4025/actasciagron.v35i3.21251 , 2013 .
[7] V. C. A. Theodoro,et al. Desempenho de cultivares de alface tipo crespa sob altas temperaturas em Cáceres-MT , 2009 .
[8] Christine Becker,et al. Nitrogen Limited Red and Green Leaf Lettuce Accumulate Flavonoid Glycosides, Caffeic Acid Derivatives, and Sucrose while Losing Chlorophylls, Β-Carotene and Xanthophylls , 2015, PloS one.
[9] Graeme L. Hammer,et al. Multi-Spectral Imaging from an Unmanned Aerial Vehicle Enables the Assessment of Seasonal Leaf Area Dynamics of Sorghum Breeding Lines , 2017, Front. Plant Sci..
[10] P. Zarco-Tejada,et al. Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize , 2015, Plant Methods.
[11] C. Zucareli,et al. Produção de cultivares de alface americana sob dois sistemas de cultivo , 2017 .
[12] R. Sakai,et al. Univariate and multivariate procedures for agronomic evaluation of organically grown tomato cultivars , 2016 .
[13] D. Inzé,et al. Cell to whole-plant phenotyping: the best is yet to come. , 2013, Trends in plant science.
[14] N. Mantel. The detection of disease clustering and a generalized regression approach. , 1967, Cancer research.
[15] T. J. C. Amado,et al. Análise de componentes principais de atributos químicos e físicos do solo limitantes à produtividade de grãos , 2012 .
[16] Warwick Estevam Kerr,et al. Divergncia gentica entre gentipos de alface por meio de marcadores AFLP , 2007 .
[17] Jill E. Cairns,et al. High-Throughput Phenotyping of Canopy Cover and Senescence in Maize Field Trials Using Aerial Digital Canopy Imaging , 2018, Remote. Sens..
[18] Edson Eyji Sano,et al. Effect of sugarcane-planting row directions on ALOS/PALSAR satellite images , 2013 .
[19] F. C. Sala,et al. Retrospectiva e tendência da alfacicultura brasileira , 2012 .
[20] F. C. Sala,et al. Reação de cultivares de alface a Thielaviopsis basicola , 2008 .
[21] Marcos Adami,et al. Índices de vegetação Modis aplicados na discriminação de áreas de soja , 2012 .
[22] R. T. Fernandez,et al. Growth and physiology of deciduous shade trees in response to controlled-release fertilizer , 2012 .
[23] R. Dallacort,et al. Produção e resistência ao pendoamento de alfaces tipo lisa cultivadas sob diferentes ambientes , 2013 .
[24] V. Böhm,et al. Carotenoids: actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. , 2009, Molecular nutrition & food research.
[25] A. Walter,et al. Plant phenotyping: from bean weighing to image analysis , 2015, Plant Methods.
[26] Daljit Singh. The Relative Importance of Characters Affecting Genetic Divergence , 1981 .
[27] P. Zarco-Tejada,et al. A Novel Remote Sensing Approach for Prediction of Maize Yield Under Different Conditions of Nitrogen Fertilization , 2016, Front. Plant Sci..
[28] Hao Yang,et al. Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives , 2017, Front. Plant Sci..
[29] Adriano Rolim da Paz,et al. Estimativa de área agrícola por meio de séries temporais Modis NDVI no Estado do Mato Grosso , 2012 .
[30] D. Rodriguez-Amaya,et al. A scheme for obtaining standards and HPLC quantification of leafy vegetable carotenoids , 2002 .
[31] Yasuomi Ibaraki,et al. Development of a digital image analysis method for real-time estimation of chlorophyll content in micropropagated potato plants , 2012, Plant Biotechnology Reports.
[32] W. Krause,et al. Desempenho agronômico de alface americana fertilizada com torta de filtro em ambiente protegido , 2013 .
[33] R. Dallacort,et al. Production and resistance to bolting of loose-leaf lettuce grown in different environments , 2013 .
[34] D. Bolonhezi,et al. Desempenho de cultivares de alface crespa em dois ambientes de cultivo em sistema hidropônico , 2011 .
[35] Danielly Santos Rocha,et al. Pigmentos Naturais em Alimentos e sua Importância para a Saúde , 2014 .
[36] P. C. Conceição,et al. Cultivo de alface em diferentes manejos de cobertura do solo e fontes de adubação , 2014 .
[37] Elisângela Clarete Camili,et al. Produção e tolerância ao pendoamento de alface-romana em diferentes ambientes , 2014 .
[38] L. E. Vicente,et al. Séries temporais de NDVI do sensor SPOT Vegetation e algoritmo SAM aplicados ao mapeamento de cana‑de‑açúcar , 2012 .
[39] K. Solhaug,et al. Effect of Irradiance on Chlorophyll Estimation with the Minolta SPAD-502 Leaf Chlorophyll Meter , 1998 .
[40] J. A. Johann,et al. Estimativa de áreas com culturas de verão no Paraná, por meio de imagens multitemporais EVI/Modis , 2012 .