Efficient Global Optimization of Expensive Black-Box Functions
暂无分享,去创建一个
Donald R. Jones | William J. Welch | Matthias Schonlau | Donald R. Jones | W. Welch | M. Schonlau | Matthias Schonlau | Matthias Schonlau | William J. Welch
[1] Margaret J. Robertson,et al. Design and Analysis of Experiments , 2006, Handbook of statistics.
[2] G. Matheron. Principles of geostatistics , 1963 .
[3] Harold J. Kushner,et al. A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in the Presence of Noise , 1964 .
[4] H. Theil. Principles of econometrics , 1971 .
[5] S. Addelman. Statistics for experimenters , 1978 .
[6] Bruce E. Stuckman,et al. A global search method for optimizing nonlinear systems , 1988, IEEE Trans. Syst. Man Cybern..
[7] William H. Press,et al. Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .
[8] William H. Press,et al. Numerical Recipes: FORTRAN , 1988 .
[9] N. Cressie. The origins of kriging , 1990 .
[10] C. D. Perttunen,et al. A computational geometric approach to feasible region division in constrained global optimization , 1991, Conference Proceedings 1991 IEEE International Conference on Systems, Man, and Cybernetics.
[11] Bruno Betrò,et al. Bayesian methods in global optimization , 1991, J. Glob. Optim..
[12] T. J. Mitchell,et al. Bayesian Prediction of Deterministic Functions, with Applications to the Design and Analysis of Computer Experiments , 1991 .
[13] J. Elder. Global R/sup d/ optimization when probes are expensive: the GROPE algorithm , 1992, [Proceedings] 1992 IEEE International Conference on Systems, Man, and Cybernetics.
[14] Antanas Zilinskas,et al. A review of statistical models for global optimization , 1992, J. Glob. Optim..
[15] Henry P. Wynn,et al. Screening, predicting, and computer experiments , 1992 .
[16] D. Dennis,et al. A statistical method for global optimization , 1992, [Proceedings] 1992 IEEE International Conference on Systems, Man, and Cybernetics.
[17] T. J. Mitchell,et al. Bayesian design and analysis of computer experiments: Use of derivatives in surface prediction , 1993 .
[18] Mike Rees,et al. 5. Statistics for Spatial Data , 1993 .
[19] N. Cressie,et al. Multivariable spatial prediction , 1994 .
[20] Jonas Mockus,et al. Application of Bayesian approach to numerical methods of global and stochastic optimization , 1994, J. Glob. Optim..
[21] Christodoulos A. Floudas,et al. αBB: A global optimization method for general constrained nonconvex problems , 1995, J. Glob. Optim..
[22] J. Sacks,et al. Predicting Urban Ozone Levels and Trends with Semiparametric Modeling , 1996 .
[23] D. Dennis,et al. SDO : A Statistical Method for Global Optimization , 1997 .
[24] N. M. Alexandrov,et al. A trust-region framework for managing the use of approximation models in optimization , 1997 .
[25] Marco Locatelli,et al. Bayesian Algorithms for One-Dimensional Global Optimization , 1997, J. Glob. Optim..
[26] William J. Welch,et al. Computer experiments and global optimization , 1997 .
[27] John E. Dennis,et al. Optimization Using Surrogate Objectives on a Helicopter Test Example , 1998 .
[28] Donald R. Jones,et al. Global versus local search in constrained optimization of computer models , 1998 .
[29] Erik D. Goodman,et al. Evaluation of Injection Island GA Performance on Flywheel Design Optimisation , 1998 .
[30] Handbook of Statistics 13: Design and Analysis of Experiments , 2000 .
[31] Richard J. Beckman,et al. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.