Joint Base Station Scheduling
暂无分享,去创建一个
Thomas Erlebach | Matús Mihalák | Peter Widmayer | Riko Jacob | Marc Nunkesser | Gábor Szabó | P. Widmayer | T. Erlebach | R. Jacob | Matús Mihalák | Marc Nunkesser | Gábor Szabó
[1] L. G. H. Cijan. A polynomial algorithm in linear programming , 1979 .
[2] Martin Grötschel,et al. The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..
[3] Frits C. R. Spieksma,et al. Interval selection: Applications, algorithms, and lower bounds , 2003, J. Algorithms.
[4] Stefan Felsner,et al. Trapezoid Graphs and Generalizations, Geometry and Algorithms , 1994, Discret. Appl. Math..
[5] Fredrik Bengtsson,et al. Efficient Algorithms for k Maximum Sums , 2006, Algorithmica.
[6] Kathryn Fraughnaugh,et al. Introduction to graph theory , 1973, Mathematical Gazette.
[7] F. Spieksma. On the approximability of an interval scheduling problem , 1999 .
[8] A. Brandstädt,et al. Graph Classes: A Survey , 1987 .
[9] Joseph Naor,et al. New hardness results for congestion minimization and machine scheduling , 2004, STOC '04.
[10] Harish Viswanathan,et al. Dynamic load balancing through coordinated scheduling in packet data systems , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).
[11] Jeremy P. Spinrad,et al. Efficient graph representations , 2003, Fields Institute monographs.
[12] L. Khachiyan. Polynomial algorithms in linear programming , 1980 .
[13] A. Gräf,et al. On Coloring Unit Disk Graphs , 1998, Algorithmica.
[14] Mark de Berg,et al. Computational geometry: algorithms and applications , 1997 .