Shape and topology optimization for periodic problems

The present paper deals with the implementation of an optimization algorithm for periodic problems which alternates shape and topology optimization; the theoretical background about shape and topological derivatives was developed in Part I (Barbarosie and Toader, Struct Multidiscipl Optim, 2009). The proposed numerical code relies on a special implementation of the periodicity conditions based on differential geometry concepts: periodic functions are viewed as functions defined on a torus. Moreover the notion of periodicity is extended and cases where the periodicity cell is a general parallelogram are admissible. This approach can be adapted to other frameworks (e.g. Bloch waves or fluid dynamics). The numerical method was tested for the design of periodic microstructures. Several examples of optimal microstructures are given for bulk modulus maximization, maximization of rigidity for shear response, maximization of rigidity in a prescribed direction, minimization of the Poisson coefficient.

[1]  J. Zolésio,et al.  Introduction to shape optimization : shape sensitivity analysis , 1992 .

[2]  Cristian Barbarosie Shape and Topology Optimization for Periodic Problems Part II: Optimization algorithm and numerical examples , 2008 .

[3]  Shmuel Vigdergauz,et al.  Two-dimensional grained composites of minimum stress concentration , 1997 .

[4]  G. Allaire Homogenization and two-scale convergence , 1992 .

[5]  O. Sigmund,et al.  Multiphase composites with extremal bulk modulus , 2000 .

[6]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[7]  Jacques Simon,et al.  Etude de Problème d'Optimal Design , 1975, Optimization Techniques.

[8]  Anne-Christine Hladky-Hennion,et al.  Analysis of the propagation of plane acoustic waves in passive periodic materials using the finite element method , 1995 .

[9]  O. Sigmund A new class of extremal composites , 2000 .

[10]  Grégoire Allaire,et al.  BLOCH WAVE HOMOGENIZATION AND SPECTRAL ASYMPTOTIC ANALYSIS , 1998 .

[11]  OPTIMIZATION OF PERIODIC MICROSTRUCTURES USING SHAPE AND TOPOLOGY DERIVATIVES , 2008 .

[12]  Cristian Barbarosie,et al.  Shape and topology optimization for periodic problems , 2009 .

[13]  B. Maury Fluid–particle shear flows , 2003 .

[14]  B. Maury Regular Article: Direct Simulations of 2D Fluid-Particle Flows in Biperiodic Domains , 1999 .

[15]  Jan Sokoƒowski,et al.  TOPOLOGICAL DERIVATIVES OF SHAPE FUNCTIONALS FOR ELASTICITY SYSTEMS* , 2001 .

[16]  M. M. Neves,et al.  Periodic structures for frequency filtering: analysis and optimization , 2004 .

[17]  Qatu,et al.  Shape Optimization by the Homogenization Method. Applied Mathematical Sciences, Vol 146 , 2003 .

[18]  G. Allaire,et al.  Shape optimization by the homogenization method , 1997 .

[19]  Cristian Barbarosie,et al.  Shape optimization of periodic structures , 2003 .

[20]  Philippe Guillaume,et al.  The Topological Asymptotic for PDE Systems: The Elasticity Case , 2000, SIAM J. Control. Optim..

[21]  V. Kobelev,et al.  Bubble method for topology and shape optimization of structures , 1994 .

[22]  H. B. Veiga On non-Newtonian p-fluids. The pseudo-plastic case , 2008 .

[23]  G. Allaire,et al.  Optimal design for minimum weight and compliance in plane stress using extremal microstructures , 1993 .