Probability of Collision Estimation and Optimization Under Uncertainty Utilizing Separated Representations
暂无分享,去创建一个
[1] J. Dormand,et al. A family of embedded Runge-Kutta formulae , 1980 .
[2] A. Nouy. Proper Generalized Decompositions and Separated Representations for the Numerical Solution of High Dimensional Stochastic Problems , 2010 .
[3] G. Iaccarino,et al. Non-intrusive low-rank separated approximation of high-dimensional stochastic models , 2012, 1210.1532.
[4] H. Elman,et al. DESIGN UNDER UNCERTAINTY EMPLOYING STOCHASTIC EXPANSION METHODS , 2008 .
[5] Brandon A. Jones,et al. Postmaneuver Collision Probability Estimation Using Sparse Polynomial Chaos Expansions , 2015 .
[6] A. Doostan,et al. Nonlinear Propagation of Orbit Uncertainty Using Non-Intrusive Polynomial Chaos , 2013 .
[7] Martin J. Mohlenkamp,et al. Multivariate Regression and Machine Learning with Sums of Separable Functions , 2009, SIAM J. Sci. Comput..
[8] Geoffrey T. Parks,et al. Multi-Objective Optimization for Multiphase Orbital Rendezvous Missions , 2013 .
[9] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[10] Bruce A. Conway,et al. Optimal finite-thrust rendezvous trajectories found via particle swarm algorithm , 2012 .
[11] Alireza Doostan,et al. Satellite collision probability estimation using polynomial chaos expansions , 2013 .
[12] S. Alfano,et al. Satellite Conjunction Monte Carlo Analysis , 2009 .
[13] R. Armellin,et al. A high order method for orbital conjunctions analysis: Monte Carlo collision probability computation , 2015 .
[14] Gianluca Iaccarino,et al. A least-squares approximation of partial differential equations with high-dimensional random inputs , 2009, J. Comput. Phys..
[15] Shawn E. Gano,et al. Comparison of Three Surrogate Modeling Techniques: Datascape r , Kriging, and Second Order Regression , 2006 .
[16] Bob E. Schutz,et al. Orbit Determination Concepts , 2004 .
[17] G. Kerschen,et al. Robust rendez-vous planning using the scenario approach and differential flatness , 2015 .
[18] Nestor V. Queipo,et al. Efficient Shape Optimization Under Uncertainty Using Polynomial Chaos Expansions and Local Sensitivities , 2006 .
[19] J. Peláez,et al. DROMO propagator revisited , 2013 .
[20] Mathilde Chevreuil,et al. A Least-Squares Method for Sparse Low Rank Approximation of Multivariate Functions , 2015, SIAM/ASA J. Uncertain. Quantification.
[21] D. Scheeres,et al. Tractable Expressions for Nonlinearly Propagated Uncertainties , 2015 .
[22] A. Doostan,et al. Orbit uncertainty propagation and sensitivity analysis with separated representations , 2016, Celestial Mechanics and Dynamical Astronomy.
[23] Yifei Sun,et al. Uncertainty propagation in orbital mechanics via tensor decomposition , 2016 .
[24] R. Askey,et al. Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials , 1985 .
[25] Kyle J. DeMars,et al. Collision Probability with Gaussian Mixture Orbit Uncertainty , 2014 .
[26] Slawomir J. Nasuto,et al. Search space pruning and global optimisation of multiple gravity assist spacecraft trajectories , 2007, J. Glob. Optim..
[27] J. Russell Carpenter,et al. Operational Experience with the Wald Sequential Probability Ratio Test for Conjunction Assessment from the Magnetospheric MultiScale Mission , 2016 .
[28] Marc Balducci,et al. Orbit Uncertainty Propagation with Separated Representations , 2018 .
[29] Georgia Deaconu,et al. Minimizing the Effects of Navigation Uncertainties on the Spacecraft Rendezvous Precision , 2014 .
[30] Guo-Jin Tang,et al. Uncertainty Quantification for Short Rendezvous Missions Using a Nonlinear Covariance Propagation Method , 2016 .
[31] John L. Junkins,et al. Non-Gaussian error propagation in orbital mechanics , 1996 .
[32] J. Mueller. Onboard Planning of Collision Avoidance Maneuvers Using Robust Optimization , 2009 .
[33] D. Vallado. Fundamentals of Astrodynamics and Applications , 1997 .
[34] Gregory Beylkin,et al. Randomized Alternating Least Squares for Canonical Tensor Decompositions: Application to A PDE With Random Data , 2015, SIAM J. Sci. Comput..
[35] Boris N. Khoromskij,et al. Tensor-Structured Galerkin Approximation of Parametric and Stochastic Elliptic PDEs , 2011, SIAM J. Sci. Comput..
[36] Zhen Yang,et al. Robust optimization of nonlinear impulsive rendezvous with uncertainty , 2014 .
[37] Pradipto Ghosh,et al. Particle Swarm Optimization of Multiple-Burn Rendezvous Trajectories , 2012 .
[38] Denis Arzelier,et al. Robust Rendezvous Planning Under Maneuver Execution Errors , 2015 .
[39] Vivek Vittaldev,et al. Space Object Collision Probability via Monte Carlo on the Graphics Processing Unit , 2017 .
[40] Shenmin Zhang,et al. Surrogate-based parameter optimization and optimal control for optimal trajectory of Halo orbit rendezvous , 2013 .
[41] D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .
[42] H. Matthies,et al. Partitioned treatment of uncertainty in coupled domain problems: A separated representation approach , 2013, 1305.6818.
[43] Brandon A. Jones,et al. Reduced cost mission design using surrogate models , 2016 .
[44] Ya-Zhong Luo,et al. Robust Planning of Nonlinear Rendezvous with Uncertainty , 2017 .
[45] Salvatore Alfano,et al. A comprehensive assessment of collision likelihood in Geosynchronous Earth Orbit , 2018, Acta Astronautica.
[46] Anthony Nouy,et al. Model Reduction Based on Proper Generalized Decomposition for the Stochastic Steady Incompressible Navier-Stokes Equations , 2014, SIAM J. Sci. Comput..