Robust and Efficient Methods for Approximation and Optimization of Stability Measures

We consider two new algorithms with practical application to the problem of designing controllers for linear dynamical systems with input and output: a new spectral value set based algorithm called hybrid expansion-contraction intended for approximating the H∞ norm, or equivalently, the complex stability radius, of large-scale systems, and a new BFGS SQP based optimization method for nonsmooth, nonconvex constrained optimization motivated by multi-objective controller design. In comprehensive numerical experiments, we show that both algorithms in their respect domains are significantly faster and more robust compared to other available alternatives. Moreover, we present convergence guarantees for hybrid expansion-contraction, proving that it converges at least superlinearly, and observe that it converges quadratically in practice, and typically to good approximations to the H∞ norm, for problems which we can verify this. We also extend the hybrid expansion-contraction algorithm to the real stability radius, a measure which is known to be more difficult to compute than the complex stability radius. Finally, for the purposes of comparing multiple optimization methods, we present a new visualization tool called relative minimization profiles that allow for simultaneously assessing the relative performance of algorithms with respect to three important performance characteristics, highlighting how these measures interrelate to one another and compare to the other competing algorithms on heterogenous test sets. We employ relative minimization profiles to empirically validate our proposed BFGS SQP method in terms of quality of minimization, attaining feasibility, and speed of progress compared to other available methods on challenging test sets comprised of nonsmooth, nonconvex constrained optimization problems arising in controller design.

[1]  ScienceDirect,et al.  Applied numerical mathematics , 1985 .

[2]  L. Dai,et al.  Singular Control Systems , 1989, Lecture Notes in Control and Information Sciences.

[3]  Michael L. Overton,et al.  Stability Optimization for Polynomials and Matrices , 2014 .

[4]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[5]  M. Overton,et al.  FAST APPROXIMATION OF THE H∞ NORM VIA OPTIMIZATION OVER SPECTRAL VALUE SETS∗ , 2012 .

[6]  Michael L. Overton,et al.  Fast Algorithms for the Approximation of the Pseudospectral Abscissa and Pseudospectral Radius of a Matrix , 2011, SIAM J. Matrix Anal. Appl..

[7]  Stefan M. Wild,et al.  Benchmarking Derivative-Free Optimization Algorithms , 2009, SIAM J. Optim..

[8]  C. Loan How Near is a Stable Matrix to an Unstable Matrix , 1984 .

[9]  A. C. Aitken XXV.—On Bernoulli's Numerical Solution of Algebraic Equations , 1927 .

[10]  M. Steinbuch,et al.  A fast algorithm to computer the H ∞ -norm of a transfer function matrix , 1990 .

[11]  Ying Xiong Nonlinear Optimization , 2014 .

[12]  Adrian S. Lewis,et al.  HIFOO - A MATLAB package for fixed-order controller design and H ∞ optimization , 2006 .

[13]  Michael L. Overton,et al.  A Sequential Quadratic Programming Algorithm for Nonconvex, Nonsmooth Constrained Optimization , 2012, SIAM J. Optim..

[14]  Edward J. Davison,et al.  A formula for computation of the real stability radius , 1995, Autom..

[15]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[16]  H. Sadok,et al.  Vector extrapolation methods. applications and numerical comparison , 2000 .

[17]  Jorge Nocedal,et al.  A line search exact penalty method using steering rules , 2010, Mathematical Programming.

[18]  Krzysztof C. Kiwiel,et al.  Convergence of the Gradient Sampling Algorithm for Nonsmooth Nonconvex Optimization , 2007, SIAM J. Optim..

[19]  Receiver operating characteristic - Wikipedia, the free encyclopedia , 2015 .

[20]  A. Lewis,et al.  Robust stability and a criss‐cross algorithm for pseudospectra , 2003 .

[21]  L. Trefethen,et al.  Spectra and Pseudospectra , 2020 .

[22]  Michael L. Overton,et al.  Digital Object Identifier (DOI) 10.1007/s101070100225 , 2022 .

[23]  Michael L. Overton,et al.  Some Regularity Results for the Pseudospectral Abscissa and Pseudospectral Radius of a Matrix , 2012, SIAM J. Optim..

[24]  Danny C. Sorensen,et al.  Deflation Techniques for an Implicitly Restarted Arnoldi Iteration , 1996, SIAM J. Matrix Anal. Appl..

[25]  J. Tsitsiklis,et al.  Three problems on the decidability and complexity of stability , 1999 .

[26]  Timothy A. Davis,et al.  Dynamic Supernodes in Sparse Cholesky Update/Downdate and Triangular Solves , 2009, TOMS.

[27]  Adrian S. Lewis,et al.  Nonsmooth optimization via quasi-Newton methods , 2012, Mathematical Programming.

[28]  S. Cabay,et al.  A Polynomial Extrapolation Method for Finding Limits and Antilimits of Vector Sequences , 1976 .

[29]  Jorge Nocedal,et al.  Steering exact penalty methods for nonlinear programming , 2008, Optim. Methods Softw..

[30]  Paul Van Dooren,et al.  Calculating the HINFINITY-norm Using the Implicit Determinant Method , 2014, SIAM J. Matrix Anal. Appl..

[31]  Benjamin J. Keele,et al.  Cambridge University Press v. Georgia State University , 2016 .

[32]  Daniel Kressner,et al.  Subspace Methods for Computing the Pseudospectral Abscissa and the Stability Radius , 2014, SIAM J. Matrix Anal. Appl..

[33]  R. Fletcher Practical Methods of Optimization , 1988 .

[34]  D. Hinrichsen,et al.  Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness , 2010 .

[35]  S. Boyd,et al.  A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its L ∞ -norm , 1990 .

[36]  Gene H. Golub,et al.  Matrix computations , 1983 .

[37]  M. Voigt,et al.  A Structured Pseudospectral Method for H-infinity-Norm Computation of Large-Scale Descriptor Systems , 2012 .

[38]  A. Sidi,et al.  Extrapolation methods for vector sequences , 1987 .