Bayesian Inference on GARCH Models Using the Gibbs Sampler

This paper explains how the Gibbs sampler can be used to perform Bayesian inference on GARCH models. Although the Gibbs sampler is usually based on the analytical knowledge of the full conditional posterior densities, such knowledge is not available in regression models with GARCH errors. We show that the Gibbs sampler can be combined with a unidimensional deterministic integration rule applied to each coordinate of the posterior density.

[1]  T. Andersen THE ECONOMETRICS OF FINANCIAL MARKETS , 1998, Econometric Theory.

[2]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[3]  Non‐stationarity in garch models: A bayesian analysis , 1993 .

[4]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[5]  R. Chou,et al.  ARCH modeling in finance: A review of the theory and empirical evidence , 1992 .

[6]  A. Zellner,et al.  Gibbs Sampler Convergence Criteria , 1995 .

[7]  Bradley P. Carlin,et al.  An iterative Monte Carlo method for nonconjugate Bayesian analysis , 1991 .

[8]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[9]  G. Casella,et al.  Explaining the Gibbs Sampler , 1992 .

[10]  T. Kloek,et al.  Bayesian estimates of equation system parameters, An application of integration by Monte Carlo , 1976 .

[11]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .

[12]  Pierre Giot,et al.  A Gibbs sampling approach to cointegration , 1998 .

[13]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[14]  M. Tanner,et al.  Facilitating the Gibbs Sampler: The Gibbs Stopper and the Griddy-Gibbs Sampler , 1992 .

[15]  R. Engle,et al.  Forecasting Volatility and Option Prices of the S&P 500 Index , 1994 .

[16]  J. Geweke,et al.  Exact predictive densities for linear models with arch disturbances , 1989 .

[17]  Bin Yu,et al.  Looking at Markov samplers through cusum path plots: a simple diagnostic idea , 1998, Stat. Comput..

[18]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[19]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[20]  Jacques H. Dreze,et al.  Bayesian regression analysis using poly-t densities , 1977 .

[21]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[22]  John Geweke,et al.  Posterior simulators in econometrics , 1995 .

[23]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[24]  Anil K. Bera,et al.  ARCH Models: Properties, Estimation and Testing , 1993 .

[25]  Daniel B. Nelson Stationarity and Persistence in the GARCH(1,1) Model , 1990, Econometric Theory.

[26]  J. Geweke,et al.  Bayesian Treatment of the Independent Student- t Linear Model , 1993 .

[27]  A. Harvey,et al.  5 Stochastic volatility , 1996 .

[28]  J. Zakoian Threshold heteroskedastic models , 1994 .

[29]  J. Geweke Bayesian comparison of econometric models , 1994 .

[30]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[31]  H. Iemoto Modelling the persistence of conditional variances , 1986 .

[32]  Christian P. Robert A Pathological MCMC Algorithm and its Use as a Benchmark for Convergence Assessment Techniques , 1998 .