Recent advances in understanding the structure, function, and biotechnological usefulness of the hemoglobin from the bacterium Vitreoscilla

The hemoglobin from the bacterium Vitreoscilla (VHb) is the first microbial hemoglobin that was conclusively identified as such (in 1986). It has been extensively studied with respect to its ligand binding properties and mechanisms, structure, biochemical functions, and the mechanisms by which its expression is controlled. In addition, cloning of its gene (vgb) into a variety of heterologous hosts has proved that its expression results substantial increases in production of a variety of useful products and ability to degrade potentially harmful compounds. Recent studies (since 2005) have added significant knowledge to all of these areas and shown the broad range of biotechnological applications in which VHb can have a positive effect.

[1]  K. Pagilla,et al.  2‐Chlorobenzoate Biodegradation by Recombinant Burkholderia cepacia under Hypoxic Conditions in a Membrane Bioreactor , 2005, Water environment research : a research publication of the Water Environment Federation.

[2]  K. Pagilla,et al.  Role of Hemoglobin in Improving Biodegradation of Aromatic Contaminants under Hypoxic Conditions , 2008, Journal of Molecular Microbiology and Biotechnology.

[3]  D. Webster,et al.  Functional implications of the proximal site hydrogen bonding network in Vitreoscilla hemoglobin (VHb): Role of Tyr95 (G5) and Tyr126 (H12) , 2008, FEBS letters.

[4]  Hikmet Geçkil,et al.  Degradation of Benzene, Toluene and Xylene by Pseudomonas aeruginosa Engineered with the Vitreoscilla Hemoglobin Gene , 2005 .

[5]  S. Wakabayashi,et al.  Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla , 1986, Nature.

[6]  Ju Chu,et al.  Intracellular expression of Vitreoscilla hemoglobin improves S-adenosylmethionine production in a recombinant Pichia pastoris , 2007, Applied Microbiology and Biotechnology.

[7]  A. Nuutila,et al.  Heterologous Expression of Vitreoscilla Hemoglobin (VHb) and Cultivation Conditions Affect the Alkaloid Profile of Hyoscyamus muticus Hairy Roots , 2006, Biotechnology progress.

[8]  B. Chance,et al.  Spectral evidence for the existence of a second cytochrome o in whole cells of Vitreoscilla. , 1983, Journal of Biological Chemistry.

[9]  Zinan Wang,et al.  Functional expression of Vitreoscilla hemoglobin (VHb) in Arabidopsis relieves submergence, nitrosative, photo-oxidative stress and enhances antioxidants metabolism , 2009 .

[10]  D. Webster,et al.  Control of heme content in Vitreoscilla by oxygen. , 1982 .

[11]  A. Xiong,et al.  Vitreoscilla hemoglobin overexpression increases submergence tolerance in cabbage , 2005, Plant Cell Reports.

[12]  D. Webster,et al.  Mutational study of the bacterial hemoglobin distal heme pocket. , 2005, Biochemical and biophysical research communications.

[13]  C. Isarankura-Na-Ayudhya,et al.  Shedding Light on the Role of Vitreoscilla Hemoglobin on Cellular Catabolic Regulation by Proteomic Analysis , 2008, International journal of biological sciences.

[14]  G. Eichhorn,et al.  Advances in Inorganic Biochemistry , 1994 .

[15]  Hikmet Geçkil,et al.  Effect of Vitreoscilla hemoglobin on production of a chemotherapeutic enzyme, L‐asparaginase, by Pseudomonas aeruginosa , 2006, Biotechnology journal.

[16]  J. Bailey,et al.  Expression of Vitreoscilla Hemoglobin in Escherichiacoli Enhances Ribosome and tRNA Levels: A Flow Field‐Flow Fractionation Study , 1999, Biotechnology progress.

[17]  K. Khleifat,et al.  Effect of Vitreoscilla hemoglobin gene (vgb) and metabolic inhibitors on cadmium uptake by the heterologous host Enterobacter aerogenes , 2006 .

[18]  Hikmet Geçkil,et al.  Genetic engineering of Enterobacter aerogenes with the Vitreoscilla hemoglobin gene: cell growth, survival, and antioxidant enzyme status under oxidative stress. , 2003, Research in microbiology.

[19]  D. Webster,et al.  The bacterial hemoglobin from Vitreoscilla can support the aerobic growth of Escherichia coli lacking terminal oxidases. , 1992, Archives of biochemistry and biophysics.

[20]  L. Tao,et al.  Expression of bacterial hemoglobin genes to improve astaxanthin production in a methanotrophic bacterium Methylomonas sp. , 2007, Applied Microbiology and Biotechnology.

[21]  D. Webster,et al.  ArcA works with Fnr as a positive regulator of Vitreoscilla (bacterial) hemoglobin gene expression in Escherichia coli. , 2005, Microbiological research.

[22]  D. Webster,et al.  Cloning, characterization and expression of the bacterial globin gene from Vitreoscilla in Escherichia coli. , 1988, Gene.

[23]  D. Webster,et al.  Redox-mediated interactions of VHb (Vitreoscilla haemoglobin) with OxyR: novel regulation of VHb biosynthesis under oxidative stress. , 2010, The Biochemical journal.

[24]  A. Howard,et al.  Vitreoscilla Hemoglobin Binds to Subunit I of Cytochrome bo Ubiquinol Oxidases* , 2002, The Journal of Biological Chemistry.

[25]  P. Kallio,et al.  Assessment of biotechnologically relevant characteristics of heterologous hemoglobins in E. coli. , 2008, Methods in enzymology.

[26]  Webster Da Structure and function of bacterial hemoglobin and related proteins. , 1988 .

[27]  M. Bolognesi,et al.  Unusual structure of the oxygen-binding site in the dimeric bacterial hemoglobin from Vitreoscilla sp. , 1997, Structure.

[28]  D. Webster The formation of hydrogen peroxide during the oxidation of reduced nicotinamide adenine dinucleotide by cytochrome o from Vitreoscilla. , 1975, The Journal of biological chemistry.

[29]  S. Mande,et al.  Chimeric Vitreoscilla Hemoglobin (VHb) Carrying a Flavoreductase Domain Relieves Nitrosative Stress in Escherichia coli: New Insight into the Functional Role of VHb , 2002, Applied and Environmental Microbiology.

[30]  K. Pagilla,et al.  Enhanced kinetics of genetically engineered Burkholderia cepacia: the role of vgb in the hypoxic metabolism of 2‐CBA , 2004, Biotechnology and bioengineering.

[31]  P. Soo,et al.  Enhanced polyhydroxybutyrate (PHB) production via the coexpressed phaCAB and vgb genes controlled by arabinose PBAD promoter in Escherichia coli , 2010, Letters in applied microbiology.

[32]  D. Webster,et al.  Study of Vitreoscilla globin (vgb) gene expression and promoter activity in E. coli through transcriptional fusion. , 1990, Nucleic acids research.

[33]  H. Cha,et al.  Enhancement of Mussel Adhesive Protein Production in Escherichia coli by Co‐expression of Bacterial Hemoglobin , 2008, Biotechnology progress.

[34]  D. Webster,et al.  Effects of Vitreoscilla hemoglobin on the 2,4-dinitrotoluene (2,4-DNT) dioxygenase activity of Burkholderia and on 2,4-DNT degradation in two-phase bioreactors , 2003, Journal of Industrial Microbiology and Biotechnology.

[35]  L. Bülow,et al.  Gene expression profiling of Escherichia coli expressing double Vitreoscilla haemoglobin. , 2004, Journal of biotechnology.

[36]  P. Kallio,et al.  Endogenous PttHb1 and PttTrHb, and heterologous Vitreoscilla vhb haemoglobin gene expression in hybrid aspen roots with ectomycorrhizal interaction , 2008, Journal of experimental botany.

[37]  Y. Ziniu,et al.  Expression of Vitreoscilla hemoglobin in Bacillus thuringiensis improve the cell density and insecticidal crystal proteins yield , 2007, Applied Microbiology and Biotechnology.

[38]  K. Pagilla,et al.  Engineering of ethanolic E. coli with the Vitreoscilla hemoglobin gene enhances ethanol production from both glucose and xylose , 2010, Applied Microbiology and Biotechnology.

[39]  Cheng-Kang Lee,et al.  Enhanced Hyaluronic Acid Production in Bacillussubtilis by Coexpressing Bacterial Hemoglobin , 2007, Biotechnology progress.

[40]  R. Griffiths Shedding light , 1975, Nature.

[41]  Qian-Qian Liu,et al.  Microbial production of l-glutamate and l-glutamine by recombinant Corynebacterium glutamicum harboring Vitreoscilla hemoglobin gene vgb , 2008, Applied Microbiology and Biotechnology.

[42]  Guoqiang Chen,et al.  Molecular Cloning of Polyhydroxyalkanoate Synthesis Operon from Aeromonashydrophila and Its Expression in Escherichia coli , 2004, Biotechnology progress.

[43]  Ramandeep,et al.  Vitreoscilla Hemoglobin , 2001, The Journal of Biological Chemistry.

[44]  P. Kallio,et al.  Bacterial hemoglobins and flavohemoglobins: versatile proteins and their impact on microbiology and biotechnology. , 2003, FEMS microbiology reviews.

[45]  D. Webster,et al.  Structure-function studies of the Vitreoscilla hemoglobin D-region. , 2004, Biochemical and biophysical research communications.

[46]  A. Balestrazzi,et al.  Expression of the Vitreoscilla Hemoglobin (VHb)-Encoding Gene in Transgenic White Poplar: Plant Growth and Biomass Production, Biochemical Characterization and Cell Survival under Submergence, Oxidative and Nitrosative Stress Conditions , 2006, Molecular Breeding.

[47]  K. Pagilla,et al.  Comparison of 2-chlorobenzoic acid biodegradation in a membrane bioreactor by B. cepacia and B. cepacia bearing the bacterial hemoglobin gene. , 2006, Water research.

[48]  Qian-Qian Liu,et al.  Genetic engineering of Pseudomonas putida KT2442 for biotransformation of aromatic compounds to chiral cis-diols. , 2007, Journal of biotechnology.

[49]  D. Webster,et al.  Expression of Vitreoscilla hemoglobin in Gordonia amarae enhances biosurfactant production , 2006, Journal of Industrial Microbiology and Biotechnology.

[50]  D. Abarca,et al.  Heterologous expression , 1988 .

[51]  D. Webster,et al.  Site-directed mutagenesis of bacterial hemoglobin: the role of glutamine (E7) in oxygen-binding in the distal heme pocket. , 1998, Archives of Biochemistry and Biophysics.

[52]  Xueping Guo,et al.  Improved poly-gamma-glutamic acid production by chromosomal integration of the Vitreoscilla hemoglobin gene (vgb) in Bacillus subtilis. , 2010, Bioresource technology.

[53]  Kumar,et al.  Unusual , 2020, Organic letters.

[54]  J. Xing,et al.  Enhancement of Biodesulfurization in Two-Liquid Systems by Heterogeneous Expression of Vitreoscilla Hemoglobin , 2007, Applied and Environmental Microbiology.

[55]  D. Webster,et al.  Presence of the bacterial hemoglobin gene improves α-amylase production of a recombinantEscherichia coli strain , 1990 .

[56]  F. Fernández,et al.  Expression of the bacterial hemoglobin gene from Vitreoscilla stercoraria increases rifamycin B production in Amycolatopsis mediterranei. , 2008, Journal of bioscience and bioengineering.

[57]  J. Bailey,et al.  Transgenic tobacco expressing Vitreoscilla hemoglobin exhibits enhanced growth and altered metabolite production , 1997, Nature Biotechnology.

[58]  Hikmet Geçkil,et al.  Production of L-DOPA and dopamine in recombinant bacteria bearing the Vitreoscilla hemoglobin gene. , 2009, Biotechnology journal.

[59]  J. Gough,et al.  A phylogenomic profile of globins , 2006, BMC Evolutionary Biology.

[60]  N. Welsh,et al.  Role of TAB1 in nitric oxide-induced p38 activation in insulin-producing cells , 2006, International journal of biological sciences.

[61]  Lei Zhang,et al.  Recent developments and future prospects of Vitreoscilla hemoglobin application in metabolic engineering. , 2007, Biotechnology advances.

[62]  D. Webster Structure and function of bacterial hemoglobin and related proteins. , 1988, Advances in inorganic biochemistry.

[63]  M. I. Setyawati,et al.  Expressing Vitreoscilla hemoglobin in statically cultured Acetobacter xylinum with reduced O(2) tension maximizes bacterial cellulose pellicle production. , 2007, Journal of biotechnology.

[64]  L. Bülow,et al.  An investigation of the peroxidase activity of Vitreoscilla hemoglobin , 2007, JBIC Journal of Biological Inorganic Chemistry.

[65]  J. Bailey,et al.  Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli , 1988, Nature.

[66]  Shujing Sun,et al.  Enhanced production of total flavones and exopolysaccharides viaVitreoscilla hemoglobin biosynthesis in Phellinus igniarius. , 2011, Bioresource technology.

[67]  Cheng-Kang Lee,et al.  Enhancement of Cellulose Pellicle Production by Constitutively Expressing Vitreoscilla Hemoglobin in Acetobacter xylinum , 2006, Biotechnology progress.

[68]  J. Gerritse,et al.  Isolation of Alcaligenes sp. strain L6 at low oxygen concentrations and degradation of 3-chlorobenzoate via a pathway not involving (chloro)catechols , 1996, Applied and environmental microbiology.

[69]  D. Webster,et al.  The purification and properties of cytochrome o from Vitreoscilla. , 1966, The Journal of biological chemistry.

[70]  B. Chattoo,et al.  Expression of Vitreoscilla hemoglobin enhances growth and levels of α-amylase in Schwanniomyces occidentalis , 2006, Applied Microbiology and Biotechnology.

[71]  D. Webster,et al.  Biodegradation of 2-Chlorobenzoate by Recombinant Burkholderia Cepacia Expressing Vitreoscilla Hemoglobin Under Variable Levels of Oxygen Availability , 2003, Biodegradation.

[72]  Q. Yao,et al.  Engineering Higher Yield and Herbicide Resistance in Rice by Agrobacterium‐Mediated Multiple Gene Transformation , 2004 .

[73]  D. Wei,et al.  Expression of Vitreoscilla Hemoglobin Enhances Cell Growth and Dihydroxyacetone Production in Gluconobacter oxydans , 2010, Current Microbiology.

[74]  Eung-Soo Kim,et al.  Combination strategy to increase cyclosporin A productivity by Tolypocladium niveum using random mutagenesis and protoplast transformation. , 2009, Journal of microbiology and biotechnology.

[75]  C. Appleby Electron transport systems of Rhizobium japonicum. II. Rhizobium haemoglobin, cytochromes and oxidases in free-living (cultured) cells. , 1969, Biochimica et biophysica acta.

[76]  Liping Xie,et al.  Improvement of Cephalosporin C Production by Recombinant DNA Integration in Acremonium chrysogenum , 2010, Molecular biotechnology.

[77]  Qiong Wu,et al.  Production and characterization of homopolymer poly(3-hydroxyvalerate) (PHV) accumulated by wild type and recombinant Aeromonas hydrophila strain 4AK4. , 2009, Bioresource technology.