A New Monte Carlo Approach for Conservation Laws and Relaxation Systems

We present a Monte Carlo method for approximating the solution of conservation laws. A relaxation method is used to transform the conservation law to a kinetic form that can be interpreted in a probabilistic manner. A Monte Carlo algorithm is then used to simulate the kinetic approximation. The method we present in this paper is simple to formulate and to implement, and can be straightforwardly extended to higher dimensional conservation laws. Numerical experiments are carried out using Burgers equation subject to both smooth and nonsmooth initial data.

[1]  Shi Jin,et al.  Relaxation approximations to front propagation , 1997 .

[2]  R. Natalini Convergence to equilibrium for the relaxation approximations of conservation laws , 1996 .

[3]  Lorenzo Pareschi,et al.  An introduction to Monte Carlo method for the Boltzmann equation , 2001 .

[4]  O. Lakkis,et al.  A FINITE ELEMENT METHOD VIA NOISE REGULARIZATION FOR THE STOCHASTIC ALLEN-CAHN PROBLEM , 2005 .

[5]  Music Musi Georgia Institute of Technology , 2002 .

[6]  Lorenzo Pareschi,et al.  A recursive Monte Carlo method for the Boltzmann equation in the Maxwellian case , 2001, Monte Carlo Methods Appl..

[7]  Z. Xin,et al.  The relaxation schemes for systems of conservation laws in arbitrary space dimensions , 1995 .

[8]  D. Pullin,et al.  Generation of normal variates with given sample mean and variance , 1979 .

[9]  Panagiotis E. Souganidis,et al.  Stochastic Ising models and anisotropic front propagation , 1997 .

[10]  J. Giedt,et al.  Rensselaer Polytechnic Institute , 1960, Nature.

[11]  Markos A. Katsoulakis,et al.  Bridging the gap of multiple scales: From microscopic, to mesoscopic, to macroscopic models , 2001 .

[12]  Alexandros Sopasakis,et al.  Error control and analysis in coarse-graining of stochastic lattice dynamics , 2005 .

[13]  Markos A. Katsoulakis,et al.  Stochastic curvature flows: asymptotic derivation, level set formulation and numerical experiments , 2001 .

[14]  Markos A. Katsoulakis,et al.  COARSE-GRAINING SCHEMES AND A POSTERIORI ERROR ESTIMATES FOR STOCHASTIC LATTICE SYSTEMS , 2006, math/0608007.

[15]  A. Tzavaras,et al.  Contractive relaxation systems and the scalar multidimensional conservation law , 1997 .

[16]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[17]  Z. Xin,et al.  Relaxation schemes for curvature-dependent front propagation , 1999 .

[18]  FROM MICROSCOPIC TO MACROSCOPIC MODELS FOR PHASE TRANSITIONS , 1996 .

[19]  Markos A. Katsoulakis,et al.  Stochastic hydrodynamical limits of particle systems , 2006 .

[20]  G. Harcos,et al.  The Institute for Advanced Study , 1933, Nature.

[21]  Lorenzo Pareschi,et al.  Time Relaxed Monte Carlo Methods for the Boltzmann Equation , 2001, SIAM J. Sci. Comput..

[22]  Markos A. Katsoulakis,et al.  Information Loss in Coarse-Graining of Stochastic Particle Dynamics , 2006 .

[23]  J C Olsen,et al.  THE AMERICAN INSTITUTE OF CHEMICAL ENGINEERS. , 1912, Science.

[24]  L L Conant,et al.  THE WORCESTER POLYTECHNIC INSTITUTE. , 1906, Science.

[25]  A. Tzavaras,et al.  Multiscale Analysis for Interacting Particles: Relaxation Systems and Scalar Conservation Laws , 1999 .

[26]  Graeme A. Bird,et al.  Molecular Gas Dynamics , 1976 .

[27]  C. Makridakis,et al.  Convergence and error estimates of relaxation schemes for multidimensional conservation laws , 1999 .

[28]  Kenichi Nanbu,et al.  Direct Simulation Scheme Derived from the Boltzmann Equation. IV. Correlation of Velocity , 1981 .

[29]  R. LeVeque Numerical methods for conservation laws , 1990 .

[30]  Lorenzo Pareschi,et al.  An Implicit Monte Carlo Method for Rarefied Gas Dynamics , 1999 .