A New Monte Carlo Approach for Conservation Laws and Relaxation Systems
暂无分享,去创建一个
[1] Shi Jin,et al. Relaxation approximations to front propagation , 1997 .
[2] R. Natalini. Convergence to equilibrium for the relaxation approximations of conservation laws , 1996 .
[3] Lorenzo Pareschi,et al. An introduction to Monte Carlo method for the Boltzmann equation , 2001 .
[4] O. Lakkis,et al. A FINITE ELEMENT METHOD VIA NOISE REGULARIZATION FOR THE STOCHASTIC ALLEN-CAHN PROBLEM , 2005 .
[5] Music Musi. Georgia Institute of Technology , 2002 .
[6] Lorenzo Pareschi,et al. A recursive Monte Carlo method for the Boltzmann equation in the Maxwellian case , 2001, Monte Carlo Methods Appl..
[7] Z. Xin,et al. The relaxation schemes for systems of conservation laws in arbitrary space dimensions , 1995 .
[8] D. Pullin,et al. Generation of normal variates with given sample mean and variance , 1979 .
[9] Panagiotis E. Souganidis,et al. Stochastic Ising models and anisotropic front propagation , 1997 .
[10] J. Giedt,et al. Rensselaer Polytechnic Institute , 1960, Nature.
[11] Markos A. Katsoulakis,et al. Bridging the gap of multiple scales: From microscopic, to mesoscopic, to macroscopic models , 2001 .
[12] Alexandros Sopasakis,et al. Error control and analysis in coarse-graining of stochastic lattice dynamics , 2005 .
[13] Markos A. Katsoulakis,et al. Stochastic curvature flows: asymptotic derivation, level set formulation and numerical experiments , 2001 .
[14] Markos A. Katsoulakis,et al. COARSE-GRAINING SCHEMES AND A POSTERIORI ERROR ESTIMATES FOR STOCHASTIC LATTICE SYSTEMS , 2006, math/0608007.
[15] A. Tzavaras,et al. Contractive relaxation systems and the scalar multidimensional conservation law , 1997 .
[16] G. Strang. On the Construction and Comparison of Difference Schemes , 1968 .
[17] Z. Xin,et al. Relaxation schemes for curvature-dependent front propagation , 1999 .
[18] FROM MICROSCOPIC TO MACROSCOPIC MODELS FOR PHASE TRANSITIONS , 1996 .
[19] Markos A. Katsoulakis,et al. Stochastic hydrodynamical limits of particle systems , 2006 .
[20] G. Harcos,et al. The Institute for Advanced Study , 1933, Nature.
[21] Lorenzo Pareschi,et al. Time Relaxed Monte Carlo Methods for the Boltzmann Equation , 2001, SIAM J. Sci. Comput..
[22] Markos A. Katsoulakis,et al. Information Loss in Coarse-Graining of Stochastic Particle Dynamics , 2006 .
[23] J C Olsen,et al. THE AMERICAN INSTITUTE OF CHEMICAL ENGINEERS. , 1912, Science.
[24] L L Conant,et al. THE WORCESTER POLYTECHNIC INSTITUTE. , 1906, Science.
[25] A. Tzavaras,et al. Multiscale Analysis for Interacting Particles: Relaxation Systems and Scalar Conservation Laws , 1999 .
[26] Graeme A. Bird,et al. Molecular Gas Dynamics , 1976 .
[27] C. Makridakis,et al. Convergence and error estimates of relaxation schemes for multidimensional conservation laws , 1999 .
[28] Kenichi Nanbu,et al. Direct Simulation Scheme Derived from the Boltzmann Equation. IV. Correlation of Velocity , 1981 .
[29] R. LeVeque. Numerical methods for conservation laws , 1990 .
[30] Lorenzo Pareschi,et al. An Implicit Monte Carlo Method for Rarefied Gas Dynamics , 1999 .