Structural basis of the farnesoid X receptor/retinoid X receptor heterodimer on inverted repeat DNA

[1]  Lee M. Tatham,et al.  FXR inhibition may protect from SARS-CoV-2 infection by reducing ACE2 , 2022, Nature.

[2]  F. Rastinejad Retinoic acid receptor structures: the journey from single domains to full-length complex , 2022, Journal of molecular endocrinology.

[3]  L. Niu,et al.  AutoPX: a new software package to process X-ray diffraction data from biomacromolecular crystals. , 2022, Acta Crystallographica Section D: Structural Biology.

[4]  J. Chiang,et al.  Discovery of farnesoid X receptor and its role in bile acid metabolism , 2022, Molecular and Cellular Endocrinology.

[5]  Julia J. Mack,et al.  FXR activation protects against NAFLD via bile-acid-dependent reductions in lipid absorption. , 2021, Cell metabolism.

[6]  Yongheng Chen,et al.  Farnesoid X receptor (FXR): Structures and ligands , 2021, Computational and structural biotechnology journal.

[7]  Yongheng Chen,et al.  Mechanism of forkhead transcription factors binding to a novel palindromic DNA site , 2021, Nucleic acids research.

[8]  D. Svergun,et al.  Structural basis for DNA recognition and allosteric control of the retinoic acid receptors RAR–RXR , 2020, Nucleic acids research.

[9]  E. Kalkhoven,et al.  FXR Isoforms Control Different Metabolic Functions in Liver Cells via Binding to Specific DNA Motifs. , 2020, Gastroenterology.

[10]  K. Kowdley,et al.  Obeticholic acid for the treatment of nonalcoholic steatohepatitis , 2020, Expert review of gastroenterology & hepatology.

[11]  Yongheng Chen,et al.  Structural basis of binding of homodimers of the nuclear receptor NR4A2 to selective Nur-responsive DNA elements , 2019, The Journal of Biological Chemistry.

[12]  V. Ramlall,et al.  Comprehensive study of nuclear receptor DNA binding provides a revised framework for understanding receptor specificity , 2019, Nature Communications.

[13]  Yongheng Chen,et al.  Structural basis for DNA recognition by FOXC2 , 2019, Nucleic acids research.

[14]  Jinsong Liu,et al.  Ligand binding and heterodimerization with retinoid X receptor α (RXRα) induce farnesoid X receptor (FXR) conformational changes affecting coactivator binding , 2018, The Journal of Biological Chemistry.

[15]  Weili Zheng,et al.  Structural insights into the heterodimeric complex of the nuclear receptors FXR and RXR , 2018, The Journal of Biological Chemistry.

[16]  Dalei Wu,et al.  The quaternary architecture of RARβ–RXRα heterodimer facilitates domain–domain signal transmission , 2017, Nature Communications.

[17]  S. Khorasanizadeh,et al.  Visualizing the Architectures and Interactions of Nuclear Receptors. , 2016, Endocrinology.

[18]  S. Keam,et al.  Obeticholic Acid: First Global Approval , 2016, Drugs.

[19]  M. Mokry,et al.  Gene expression profiling in human precision cut liver slices in response to the FXR agonist obeticholic acid. , 2016, Journal of hepatology.

[20]  J. Lupski,et al.  Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis , 2016, Nature Communications.

[21]  Ge Tan,et al.  TFBSTools: an R/bioconductor package for transcription factor binding site analysis , 2016, Bioinform..

[22]  Li Yang,et al.  Bile acid nuclear receptor FXR and digestive system diseases , 2015, Acta pharmaceutica Sinica. B.

[23]  Wendong Huang,et al.  FXR and liver carcinogenesis , 2014, Acta Pharmacologica Sinica.

[24]  D. Moras,et al.  The palindromic DNA-bound USP/EcR nuclear receptor adopts an asymmetric organization with allosteric domain positioning , 2014, Nature Communications.

[25]  Xavier Robert,et al.  Deciphering key features in protein structures with the new ENDscript server , 2014, Nucleic Acids Res..

[26]  R. Evans,et al.  Nuclear Receptors, RXR, and the Big Bang , 2014, Cell.

[27]  Paul Webb,et al.  Structure of the retinoid X receptor α–liver X receptor β (RXRα–LXRβ) heterodimer on DNA , 2014, Nature Structural &Molecular Biology.

[28]  F. Rastinejad,et al.  Retinoic acid actions through mammalian nuclear receptors. , 2014, Chemical reviews.

[29]  S. Khorasanizadeh,et al.  Understanding nuclear receptor form and function using structural biology. , 2013, Journal of molecular endocrinology.

[30]  Q. Zhan,et al.  The role of retinoic acid in hepatic lipid homeostasis defined by genomic binding and transcriptome profiling , 2013, BMC Genomics.

[31]  Dalei Wu,et al.  Multi-Domain Integration in the Structure of the HNF4α Nuclear Receptor Complex , 2013, Nature.

[32]  Stefano Pascarella,et al.  PyMod: sequence similarity searches, multiple sequence-structure alignments, and homology modeling within PyMOL , 2012, BMC Bioinformatics.

[33]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[34]  S. Boonen,et al.  Structural basis for nuclear hormone receptor DNA binding , 2012, Molecular and Cellular Endocrinology.

[35]  David S. Lapointe,et al.  ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data , 2010, BMC Bioinformatics.

[36]  Ann M. Thomas,et al.  Genome‐wide tissue‐specific farnesoid X receptor binding in mouse liver and intestine , 2010, Hepatology.

[37]  Yoshitomo Hamuro,et al.  Structure of the intact PPAR-γ–RXR-α nuclear receptor complex on DNA , 2008, Nature.

[38]  D. Moore,et al.  FXR: a metabolic regulator and cell protector , 2008, Cell Research.

[39]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[40]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[41]  G. Costantino,et al.  Molecular dynamics simulation of the ligand binding domain of farnesoid X receptor. Insights into helix-12 stability and coactivator peptide stabilization in response to agonist binding. , 2005, Journal of medicinal chemistry.

[42]  A. Ożyhar,et al.  Plasticity of the ecdysone receptor DNA binding domain. , 2004, Molecular endocrinology.

[43]  D. Gewirth,et al.  Structural analysis of RXR–VDR interactions on DR3 DNA , 2004, The Journal of Steroid Biochemistry and Molecular Biology.

[44]  S. Devarakonda,et al.  Structure of the heterodimeric ecdysone receptor DNA‐binding complex , 2003, The EMBO journal.

[45]  K. Yamamoto,et al.  Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA , 2003, Nature.

[46]  S. Kliewer,et al.  Nuclear receptors. I. Nuclear receptors and bile acid homeostasis. , 2002, American journal of physiology. Gastrointestinal and liver physiology.

[47]  J. Dallongeville,et al.  Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element. , 2002, The Journal of clinical investigation.

[48]  M. Sierk,et al.  DNA deformability as a recognition feature in the reverb response element. , 2001, Biochemistry.

[49]  S. Khorasanizadeh,et al.  Nuclear-receptor interactions on DNA-response elements. , 2001, Trends in biochemical sciences.

[50]  F. Rastinejad Retinoid X receptor and its partners in the nuclear receptor family. , 2001, Current opinion in structural biology.

[51]  S. Khorasanizadeh,et al.  Structure of the RXR–RAR DNA‐binding complex on the retinoic acid response element DR1 , 2000, The EMBO journal.

[52]  M. Sierk,et al.  Structural basis of RXR-DNA interactions. , 2000, Journal of molecular biology.

[53]  M. Lazar,et al.  Structural elements of an orphan nuclear receptor-DNA complex. , 1998, Molecular cell.

[54]  C. Pace,et al.  How to measure and predict the molar absorption coefficient of a protein , 1995, Protein science : a publication of the Protein Society.

[55]  P. Sigler,et al.  Structural determinants of nuclear receptor assembly on DNA direct repeats , 1995, Nature.

[56]  B. Contreras-Moreira,et al.  FootprintDB: Analysis of Plant Cis-Regulatory Elements, Transcription Factors, and Binding Interfaces. , 2016, Methods in molecular biology.

[57]  I. Polikarpov,et al.  Nuclear receptor full-length architectures: confronting myth and illusion with high resolution. , 2015, Trends in biochemical sciences.