Introduction To the Use of Non-Crystallographic Symmetry in Phasing

The methodology is reviewed with particular attention to developments since prior review, and to aspects most important to the improvement and extension of crudely approximated initial phases as might be encountered in ab initio structure determinations. The fundamental similarity between symmetry and multiple crystal averaging is emphasized.

[1]  D. Filman,et al.  A genetic algorithm for the ab initio phasing of icosahedral viruses. , 1996, Acta crystallographica. Section D, Biological crystallography.

[2]  S. Harrison,et al.  Tomato bushy stunt virus at 5.5-Å resolution , 1977, Nature.

[3]  B. C. Wang Resolution of phase ambiguity in macromolecular crystallography. , 1985, Methods in enzymology.

[4]  Robert E. Lynch,et al.  Molecular replacement real‐space averaging , 1992 .

[5]  G. Bricogne Geometric sources of redundancy in intensity data and their use for phase determination , 1974 .

[6]  R. Crowther A linear analysis of the non-crystallographic symmetry problem , 1967 .

[7]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[8]  G. A. Sim,et al.  A note on the heavy‐atom method , 1960 .

[9]  J. Navaza,et al.  AMoRe: an automated package for molecular replacement , 1994 .

[10]  S. Harrison,et al.  Tomato bushy stunt virus at 2.9 Å resolution , 1978, Nature.

[11]  K D Cowtan,et al.  Phase combination and cross validation in iterated density-modification calculations. , 1996, Acta crystallographica. Section D, Biological crystallography.

[12]  John E. Johnson,et al.  Structure of a human common cold virus and functional relationship to other picornaviruses , 1985, Nature.

[13]  Szu-Lin Chen,et al.  Correlating the optical rotation of α-quartz with a skew matrix of a dielectric tensor , 1993 .

[14]  K. Zhang SQUASH - combining constraints for macromolecular phase refinement and extension. , 1993, Acta crystallographica. Section D, Biological crystallography.

[15]  R. A. Crowther,et al.  A method of positioning a known molecule in an unknown crystal structure , 1967 .

[16]  L. Tong The Locked Translation Function and Other Applications of a Patterson Correlation Function , 1996 .

[17]  Reciprocal-space molecular-replacement averaging. , 1995, Acta crystallographica. Section D, Biological crystallography.

[18]  D. Schuller MAGICSQUASH: more versatile non-crystallographic averaging with mulitple constraints. , 1996, Acta Crystallographica Section D: Biological Crystallography.

[19]  M. Rossmann,et al.  Effect of errors, redundancy, and solvent content in the molecular replacement procedure for the structure determination of biological macromolecules. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[20]  D. Blow,et al.  The detection of sub‐units within the crystallographic asymmetric unit , 1962 .

[21]  R. Read Improved Fourier Coefficients for Maps Using Phases from Partial Structures with Errors , 1986 .

[22]  J. Abrahams,et al.  Methods used in the structure determination of bovine mitochondrial F1 ATPase. , 1996, Acta crystallographica. Section D, Biological crystallography.

[23]  M G Rossmann,et al.  The locked rotation function. , 1990, Acta crystallographica. Section A, Foundations of crystallography.

[24]  G. Bricogne,et al.  Methods and programs for direct‐space exploitation of geometric redundancies , 1976 .

[25]  K D Cowtan,et al.  Improvement of macromolecular electron-density maps by the simultaneous application of real and reciprocal space constraints. , 1993, Acta crystallographica. Section D, Biological crystallography.

[26]  Determination of the relative precision of atoms in a macromolecular structure. , 1998, Acta crystallographica. Section D, Biological crystallography.

[27]  W. Hol,et al.  3.2 Å structure of the copper-containing, oxygen-carrying protein Panulirus interruptus haemocyanin , 1984, Nature.

[28]  M G Rossmann,et al.  The molecular replacement method. , 1990, Acta crystallographica. Section A, Foundations of crystallography.

[29]  D. Sayre The squaring method: a new method for phase determination , 1952 .

[30]  M. Rossmann,et al.  Relationship among structure factors due to identical molecules in different crystallographic environments , 1966 .

[31]  I. Rayment,et al.  Polyoma virus capsid structure at 22.5 Å resolution , 1982, Nature.

[32]  B W Matthews,et al.  Enhancement of the method of molecular replacement by incorporation of known structural information. , 1994, Acta crystallographica. Section D, Biological crystallography.

[33]  A. Brunger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. , 1992 .

[34]  A T Brünger,et al.  Direct Observation of Protein Solvation and Discrete Disorder with Experimental Crystallographic Phases , 1996, Science.

[35]  R. Staden,et al.  Protein disk of tobacco mosaic virus at 2.8 Å resolution showing the interactions within and between subunits , 1978, Nature.

[36]  G. A. Sim,et al.  The distribution of phase angles for structures containing heavy atoms. II. A modification of the normal heavy‐atom method for non‐centrosymmetrical structures , 1959 .

[37]  R. Oberti,et al.  Phase extension and refinement by density modification in protein crystallography , 1983 .

[38]  Electron-density histograms and the phase problem. , 1993 .

[39]  M G Rossmann,et al.  The use of molecular-replacement phases for the refinement of the human rhinovirus 14 structure. , 1988, Acta crystallographica. Section A, Foundations of crystallography.

[40]  John E. Johnson,et al.  Use of Non-Crystallographic Symmetry for Ab Initio Phasing of Virus Structures , 1998 .

[41]  Axel T. Brunger,et al.  [32] Patterson correlation searches and refinement. , 1997, Methods in Enzymology.