Lossiness of Communication Channels Modeled by Transducers

We provide an automata-theoretic approach to analyzing an abstract channel modeled by a transducer and to characterizing its lossy rates. In particular, we look at related decision problems and show the boundaries between the decidable and undecidable cases.

[1]  F. P. Kaminger The Noncomputability of the Channel Capacity of Context-Senstitive Languages , 1970, Inf. Control..

[2]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[3]  Claude E. Shannon,et al.  The Mathematical Theory of Communication , 1950 .

[4]  Oscar H. Ibarra,et al.  Binary Reachability Analysis of Discrete Pushdown Timed Automata , 2000, CAV.

[5]  Oscar H. Ibarra,et al.  Information Rate of Some Classes of Non-regular Languages: An Automata-Theoretic Approach - (Extended Abstract) , 2014, MFCS.

[6]  Gheorghe Paun,et al.  Membrane Computing , 2002, Natural Computing Series.

[7]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[8]  Claude E. Shannon,et al.  A mathematical theory of communication , 1948, MOCO.

[9]  Marcel Paul Schützenberger,et al.  Sur les relations rationnelles , 1975, Automata Theory and Formal Languages.

[10]  Klaus Wich,et al.  Ambiguity functions of context-free grammars and languages , 2005 .

[11]  Oscar H. Ibarra,et al.  A Solvable Class of Quadratic Diophantine Equations with Applications to Verification of Infinite-State Systems , 2003, ICALP.

[12]  Oscar H. Ibarra,et al.  Reversal-Bounded Multicounter Machines and Their Decision Problems , 1978, JACM.

[13]  Zhe Dang,et al.  Bit Rate of Programs , 2013, ArXiv.

[14]  Werner Kuich,et al.  On the Entropy of Context-Free Languages , 1970, Inf. Control..

[15]  Oscar H. Ibarra,et al.  Similarity in languages and programs , 2013, Theor. Comput. Sci..

[16]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[17]  George A. Miller,et al.  Finite State Languages , 1958, Inf. Control..

[18]  Oscar H. Ibarra,et al.  Characterizations of Catalytic Membrane Computing Systems , 2003, MFCS.

[19]  Andreas Weber,et al.  On the valuedness of finite transducers , 1990, Acta Informatica.

[20]  Ludwig Staiger The Entropy of Lukasiewicz-Languages , 2001, Developments in Language Theory.

[21]  Qin Li,et al.  Sampling automata and programs , 2015, Theor. Comput. Sci..

[22]  Eitan M. Gurari,et al.  A note on finite-valued and finitely ambiguous transducers , 1983, Mathematical systems theory.

[23]  Zhe Dang,et al.  Pushdown timed automata: a binary reachability characterization and safety verification , 2001, Theor. Comput. Sci..

[24]  Zhe Dang,et al.  Zero-Knowledge Blackbox Testing: where are the Faults? , 2014, Int. J. Found. Comput. Sci..

[25]  Oscar H. Ibarra,et al.  Sampling a Two-Way Finite Automaton , 2015 .

[26]  Eugene Asarin,et al.  Volume and Entropy of Regular Timed Languages: Discretization Approach , 2009, CONCUR.