Multiple Time-Step Dual-Hamiltonian Hybrid Molecular Dynamics - Monte Carlo Canonical Propagation Algorithm.

A multiple time-step integrator based on a dual Hamiltonian and a hybrid method combining molecular dynamics (MD) and Monte Carlo (MC) is proposed to sample systems in the canonical ensemble. The Dual Hamiltonian Multiple Time-Step (DHMTS) algorithm is based on two similar Hamiltonians: a computationally expensive one that serves as a reference and a computationally inexpensive one to which the workload is shifted. The central assumption is that the difference between the two Hamiltonians is slowly varying. Earlier work has shown that such dual Hamiltonian multiple time-step schemes effectively precondition nonlinear differential equations for dynamics by reformulating them into a recursive root finding problem that can be solved by propagating a correction term through an internal loop, analogous to RESPA. Of special interest in the present context, a hybrid MD-MC version of the DHMTS algorithm is introduced to enforce detailed balance via a Metropolis acceptance criterion and ensure consistency with the Boltzmann distribution. The Metropolis criterion suppresses the discretization errors normally associated with the propagation according to the computationally inexpensive Hamiltonian, treating the discretization error as an external work. Illustrative tests are carried out to demonstrate the effectiveness of the method.

[1]  Efficient hybrid non-equilibrium molecular dynamics--Monte Carlo simulations with symmetric momentum reversal. , 2014, The Journal of chemical physics.

[2]  Jesús A. Izaguirre,et al.  Nonlinear instability in multiple time stepping molecular dynamics , 2003, SAC '03.

[3]  Alexander D. MacKerell,et al.  Computational Biochemistry and Biophysics , 2001 .

[4]  H. Stern Molecular simulation with variable protonation states at constant pH. , 2007, The Journal of chemical physics.

[5]  David D L Minh,et al.  Nonequilibrium candidate Monte Carlo is an efficient tool for equilibrium simulation , 2011, Proceedings of the National Academy of Sciences.

[6]  Y. Maday,et al.  A parareal in time procedure for the control of partial differential equations , 2002 .

[7]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[8]  Philip Heidelberger,et al.  A spectral method for confidence interval generation and run length control in simulations , 1981, CACM.

[9]  Jesús A. Izaguirre,et al.  The Five Femtosecond Time Step Barrier , 1999, Computational Molecular Dynamics.

[10]  Edward D Harder,et al.  Efficient multiple time step method for use with Ewald and particle mesh Ewald for large biomolecular systems , 2001 .

[11]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[12]  Sebastian Reich,et al.  Multiple-time-stepping generalized hybrid Monte Carlo methods , 2015, J. Comput. Phys..

[13]  M. Tuckerman,et al.  Long time molecular dynamics for enhanced conformational sampling in biomolecular systems. , 2004, Physical review letters.

[14]  H. Trotter On the product of semi-groups of operators , 1959 .

[15]  V. Pande,et al.  Normal mode partitioning of Langevin dynamics for biomolecules. , 2008, The Journal of chemical physics.

[16]  Sebastian Reich,et al.  GSHMC: An efficient method for molecular simulation , 2008, J. Comput. Phys..

[17]  M. Tuckerman,et al.  A Liouville-operator derived measure-preserving integrator for molecular dynamics simulations in the isothermal–isobaric ensemble , 2006 .

[18]  J. Stewart Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements , 2007, Journal of molecular modeling.

[19]  Joost VandeVondele,et al.  Ab initio molecular dynamics using hybrid density functionals. , 2008, The Journal of chemical physics.

[20]  B. Roux,et al.  Generalized Metropolis acceptance criterion for hybrid non-equilibrium molecular dynamics-Monte Carlo simulations. , 2015, The Journal of chemical physics.

[21]  T. Schlick,et al.  Efficient multiple-time-step integrators with distance-based force splitting for particle-mesh-Ewald molecular dynamics simulations , 2002 .

[22]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[23]  Christina Gloeckner,et al.  Modern Applied Statistics With S , 2003 .

[24]  E. Carter,et al.  Time-Reversible Multiple Time Scale ab Initio Molecular Dynamics , 1993 .

[25]  B. Berne,et al.  Multiple "time step" Monte Carlo , 2002 .

[26]  B. Leimkuhler,et al.  Robust and efficient configurational molecular sampling via Langevin dynamics. , 2013, The Journal of chemical physics.

[27]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[28]  R. Tweedie,et al.  Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms , 1996 .

[29]  Walter Thiel,et al.  Machine Learning of Parameters for Accurate Semiempirical Quantum Chemical Calculations , 2015, Journal of chemical theory and computation.

[30]  J. Izaguirre Longer Time Steps for Molecular Dynamics , 1999 .

[31]  Zhenwei Li,et al.  Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. , 2015, Physical review letters.

[32]  T. Schlick,et al.  Overcoming stability limitations in biomolecular dynamics. I. Combining force splitting via extrapolation with Langevin dynamics in LN , 1998 .

[33]  Stefan Goedecker,et al.  Extending molecular simulation time scales : Parallel in time integrations for high-level quantum chemistry and complex force representations , 2014 .

[34]  Mark E. Tuckerman,et al.  Explicit reversible integrators for extended systems dynamics , 1996 .

[35]  John D. Chodera,et al.  Time Step Rescaling Recovers Continuous-Time Dynamical Properties for Discrete-Time Langevin Integration of Nonequilibrium Systems , 2013, The journal of physical chemistry. B.

[36]  B. Leimkuhler,et al.  Molecular Dynamics: With Deterministic and Stochastic Numerical Methods , 2015 .

[37]  E. Vanden-Eijnden,et al.  Pathwise accuracy and ergodicity of metropolized integrators for SDEs , 2009, 0905.4218.

[38]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[39]  Efficient mixed-force first-principles molecular dynamics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Enhanced Sampling of an Atomic Model with Hybrid Nonequilibrium Molecular Dynamics—Monte Carlo Simulations Guided by a Coarse-Grained Model , 2015, Journal of chemical theory and computation.

[41]  Andrew J Ballard,et al.  Replica exchange with nonequilibrium switches , 2009, Proceedings of the National Academy of Sciences.

[42]  John D. Chodera,et al.  Using Nonequilibrium Fluctuation Theorems to Understand and Correct Errors in Equilibrium and Nonequ , 2011, 1107.2967.

[43]  Klaus Schulten,et al.  Generalized Verlet Algorithm for Efficient Molecular Dynamics Simulations with Long-range Interactions , 1991 .

[44]  B. Brooks,et al.  An analysis of the accuracy of Langevin and molecular dynamics algorithms , 1988 .

[45]  B. Roux,et al.  Constant-pH Hybrid Nonequilibrium Molecular Dynamics–Monte Carlo Simulation Method , 2015, Journal of chemical theory and computation.

[46]  Ryan P Steele,et al.  Communication: Multiple-timestep ab initio molecular dynamics with electron correlation. , 2013, The Journal of chemical physics.

[47]  Alfredo Mayall Simas,et al.  RM1: A reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I , 2006, J. Comput. Chem..

[48]  Mark E. Tuckerman,et al.  Molecular dynamics algorithm for multiple time scales: Systems with long range forces , 1991 .

[49]  A. Alexandrova,et al.  AFFCK: Adaptive Force-Field-Assisted ab Initio Coalescence Kick Method for Global Minimum Search. , 2015, Journal of chemical theory and computation.

[50]  M. Tuckerman Statistical Mechanics: Theory and Molecular Simulation , 2010 .

[51]  M. Karplus,et al.  A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations , 1990 .

[52]  S. Xantheas,et al.  The binding energies of the D2d and S4 water octamer isomers: high-level electronic structure and empirical potential results. , 2004, Journal of Chemical Physics.

[53]  Robert D. Skeel,et al.  Long-Time-Step Methods for Oscillatory Differential Equations , 1998, SIAM J. Sci. Comput..

[54]  C. Brooks Computer simulation of liquids , 1989 .

[55]  Thomas E Markland,et al.  Multiple time step integrators in ab initio molecular dynamics. , 2014, The Journal of chemical physics.

[56]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[57]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[58]  Aaron R. Dinner,et al.  Finding Chemical Reaction Paths with a Multilevel Preconditioning Protocol , 2014, Journal of chemical theory and computation.

[59]  R. Skeel,et al.  Langevin stabilization of molecular dynamics , 2001 .

[60]  Bo Qi,et al.  Using multiscale preconditioning to accelerate the convergence of iterative molecular calculations. , 2014, The Journal of chemical physics.

[61]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[62]  B. Leimkuhler,et al.  Stochastic, resonance-free multiple time-step algorithm for molecular dynamics with very large time steps , 2013, 1307.1167.

[63]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[64]  Benedict Leimkuhler,et al.  Computational Molecular Dynamics: Challenges, Methods, Ideas , 1999, Computational Molecular Dynamics.

[65]  C. Dellago,et al.  Equilibrium free energies from fast-switching trajectories with large time steps. , 2005, The Journal of chemical physics.