A robust classification procedure based on mixture classifiers and nonparametric weighted feature extraction
暂无分享,去创建一个
[1] David A. Landgrebe,et al. Covariance Matrix Estimation and Classification With Limited Training Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..
[2] H. Akaike. A new look at the statistical model identification , 1974 .
[3] J. Friedman. Regularized Discriminant Analysis , 1989 .
[4] G. Celeux,et al. An entropy criterion for assessing the number of clusters in a mixture model , 1996 .
[5] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[6] David A. Landgrebe,et al. Classification of high dimensional multispectral data , 1995 .
[7] K. Fukunaga,et al. Nonparametric Discriminant Analysis , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[8] W. Rayens,et al. Covariance pooling and stabilization for classification , 1991 .
[9] Saldju Tadjudin,et al. CLASSIFICATION OF HIGH DIMENSIONAL DATA WITH LIMITED TRAINING SAMPLES , 1998 .
[10] G. F. Hughes,et al. On the mean accuracy of statistical pattern recognizers , 1968, IEEE Trans. Inf. Theory.
[12] Robert P. W. Duin,et al. Multiclass Linear Dimension Reduction by Weighted Pairwise Fisher Criteria , 2001, IEEE Trans. Pattern Anal. Mach. Intell..
[13] Bor-Chen Kuo,et al. Improved statistics estimation and feature extraction for hyperspectral data classification , 2001 .
[14] Geoffrey J. McLachlan,et al. Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.
[15] David A. Landgrebe,et al. Information Extraction Principles and Methods for Multispectral and Hyperspectral Image Data , 1999 .
[16] Sarunas Raudys,et al. Structures of the Covariance Matrices in the Classifier Design , 1998, SSPR/SPR.