Contributions of Theoretical Modeling to the Understanding of Neural Map Development

[1]  M. Sur,et al.  Alteration of Visual Input Results in a Coordinated Reorganization of Multiple Visual Cortex Maps , 2007, The Journal of Neuroscience.

[2]  K. Obermayer,et al.  Cortical reorganization consistent with spike timing–but not correlation-dependent plasticity , 2007, Nature Neuroscience.

[3]  Geoffrey J Goodhill,et al.  The Effect of Angioscotomas on Map Structure in Primary Visual Cortex , 2007, The Journal of Neuroscience.

[4]  M. V. Velzen,et al.  Self-organizing maps , 2007 .

[5]  Carla J. Shatz,et al.  Subplate Neurons Regulate Maturation of Cortical Inhibition and Outcome of Ocular Dominance Plasticity , 2006, Neuron.

[6]  D. L. Adams,et al.  Ocular dominance columns in strabismus , 2006, Visual Neuroscience.

[7]  A. Mogilner,et al.  Quantitative modeling in cell biology: what is it good for? , 2006, Developmental cell.

[8]  Analysis of mouse EphA knockins and knockouts , 2006 .

[9]  Teuvo Kohonen,et al.  Self-organizing neural projections , 2006, Neural Networks.

[10]  Risto Miikkulainen,et al.  Joint maps for orientation, eye, and direction preference in a self-organizing model of V1 , 2006, Neurocomputing.

[11]  P. Bressloff,et al.  A Developmental Model of Ocular Dominance Column Formation on a Growing Cortex , 2006, Bulletin of mathematical biology.

[12]  John G Flanagan,et al.  Neural map specification by gradients , 2006, Current Opinion in Neurobiology.

[13]  Geoffrey E. Hinton,et al.  Topographic Product Models Applied to Natural Scene Statistics , 2006, Neural Computation.

[14]  Alexei A. Koulakov,et al.  A unifying model for activity-dependent and activity-independent mechanisms predicts complete structure of topographic maps in ephrin-A deficient mice , 2005, Journal of Computational Neuroscience.

[15]  F. Wolf Symmetry, multistability, and long-range interactions in brain development. , 2005, Physical review letters.

[16]  G. Lemke,et al.  Retinotectal mapping: new insights from molecular genetics. , 2005, Annual review of cell and developmental biology.

[17]  M. A. Carreira-Perpiñán,et al.  A computational model for the development of multiple maps in primary visual cortex. , 2005, Cerebral cortex.

[18]  Dezhe Z. Jin,et al.  The Coordinated Mapping of Visual Space and Response Features in Visual Cortex , 2005, Neuron.

[19]  D. O'Leary,et al.  Molecular gradients and development of retinotopic maps. , 2005, Annual review of neuroscience.

[20]  Daniel L Adams,et al.  The cortical column: a structure without a function , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[21]  Jun Xu,et al.  The development of retinotectal maps: a review of models based on molecular gradients. , 2005, Network.

[22]  K. Boahen Neuromorphic Microchips. (Cover story) , 2005 .

[23]  K. Boahen Neuromorphic Microchips. , 2005, Scientific American.

[24]  Greg Lemke,et al.  A relative signalling model for the formation of a topographic neural map , 2004, Nature.

[25]  D. Chklovskii,et al.  Maps in the brain: what can we learn from them? , 2004, Annual review of neuroscience.

[26]  Risto Miikkulainen,et al.  Modeling cortical maps with Topographica , 2004, Neurocomputing.

[27]  Jack D Cowan,et al.  Symmetry induced coupling of cortical feature maps. , 2004, Physical review letters.

[28]  Paul A Yates,et al.  Computational modeling of retinotopic map development to define contributions of EphA-ephrinA gradients, axon-axon interactions, and patterned activity. , 2004, Journal of neurobiology.

[29]  M. Stryker,et al.  Columnar Architecture Sculpted by GABA Circuits in Developing Cat Visual Cortex , 2004, Science.

[30]  N. Swindale,et al.  How different feature spaces may be represented in cortical maps , 2004, Network.

[31]  Alexei A Koulakov,et al.  A stochastic model for retinocollicular map development , 2003, BMC Neuroscience.

[32]  Fredric M. Wolf,et al.  Formation of field discontinuities and islands in visual cortical maps , 1994, Biological Cybernetics.

[33]  Geoffrey J. Goodhill,et al.  Topography and ocular dominance: a model exploring positive correlations , 1993, Biological Cybernetics.

[34]  Nicholas V. Swindale,et al.  Coverage and the design of striate cortex , 1991, Biological Cybernetics.

[35]  S. Tanaka,et al.  Phase transition theory for abnormal ocular dominance column formation , 1991, Biological Cybernetics.

[36]  Shigeru Tanaka,et al.  Theory of ocular dominance column formation , 1991, Biological Cybernetics.

[37]  E. L. Schwartz,et al.  Cat and monkey cortical columnar patterns modeled by bandpass-filtered 2D white noise , 1990, Biological Cybernetics.

[38]  Michael A. Arbib,et al.  The Extended Branch-Arrow Model of the formation of retino-tectal connections , 2004, Biological Cybernetics.

[39]  S. Amari,et al.  Formation of topographic maps and columnar microstructures in nerve fields , 1979, Biological Cybernetics.

[40]  J. Cowan,et al.  A mathematical theory of visual hallucination patterns , 1979, Biological Cybernetics.

[41]  H. Meinhardt,et al.  A theory of biological pattern formation , 1972, Kybernetik.

[42]  C. Malsburg Self-organization of orientation sensitive cells in the striate cortex , 2004, Kybernetik.

[43]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[44]  M. A. Carreira-Perpiñán,et al.  Influence of lateral connections on the structure of cortical maps. , 2004, Journal of neurophysiology.

[45]  Ha Youn Lee,et al.  Symmetry considerations and development of pinwheels in visual maps , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Kwabena Boahen,et al.  A Recurrent Model of Orientation Maps with Simple and Complex Cells , 2003, NIPS.

[47]  Fred Wolf,et al.  The pattern of ocular dominance columns in cat primary visual cortex: intra‐ and interindividual variability of column spacing and its dependence on genetic background , 2003, The European journal of neuroscience.

[48]  Hisao Honda,et al.  Competition between Retinal Ganglion Axons for Targets under the Servomechanism Model Explains Abnormal Retinocollicular Projection of Eph Receptor-Overexpressing or Ephrin-Lacking Mice , 2003, The Journal of Neuroscience.

[49]  Aaron R. Seitz,et al.  Laminar development of receptive fields, maps and columns in visual cortex: the coordinating role of the subplate. , 2003, Cerebral cortex.

[50]  Jonathan C Horton,et al.  The Representation of Retinal Blood Vessels in Primate Striate Cortex , 2003, The Journal of Neuroscience.

[51]  F. Wolf,et al.  Universality in visual cortical pattern formation , 2003, Journal of Physiology-Paris.

[52]  Arjen Van Ooyen,et al.  Modeling neural development , 2003 .

[53]  F. Sengpiel,et al.  The Role of Activity in Development of the Visual System , 2002, Current Biology.

[54]  D. L. Adams,et al.  Shadows Cast by Retinal Blood Vessels Mapped in Primary Visual Cortex , 2002, Science.

[55]  Rick van der Zwan,et al.  Correlation model for joint development of refined retinotopic map and ocular dominance columns , 2002, Vision Research.

[56]  F. Wolf,et al.  Genetic Influence on Quantitative Features of Neocortical Architecture , 2002, The Journal of Neuroscience.

[57]  I. Nikolaidis Web Caching and Content Delivery [Book Review] , 2002, IEEE Network.

[58]  Siegrid Löwel,et al.  Two-dimensional analysis of the spacing of ocular dominance columns in normally raised and strabismic kittens , 2002, Experimental Brain Research.

[59]  N. V. Swindale,et al.  Development of Ocular Dominance Stripes, Orientation Selectivity, and Orientation Columns , 2002 .

[60]  L. C. Katz,et al.  Development of cortical circuits: Lessons from ocular dominance columns , 2002, Nature Reviews Neuroscience.

[61]  Kwabena Boahen,et al.  Topographic Map Formation by Silicon Growth Cones , 2002, NIPS.

[62]  L. Abbott,et al.  Cortical Development and Remapping through Spike Timing-Dependent Plasticity , 2001, Neuron.

[63]  Aapo Hyvärinen,et al.  A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images , 2001, Vision Research.

[64]  Aapo Hyvärinen,et al.  Topographic Independent Component Analysis , 2001, Neural Computation.

[65]  Dmitri B. Chklovskii,et al.  Orientation Preference Patterns in Mammalian Visual Cortex A Wire Length Minimization Approach , 2001, Neuron.

[66]  Arjen van Ooyen,et al.  Competition in the development of nerve connections: a review of models , 2001 .

[67]  Teuvo Kohonen,et al.  Self-Organizing Maps, Third Edition , 2001, Springer Series in Information Sciences.

[68]  A. van Ooyen Competition in the development of nerve connections: a review of models. , 2001, Network.

[69]  K. Pawelzik,et al.  How can squint change the spacing of ocular dominance columns? , 2000, Journal of Physiology-Paris.

[70]  Svetlana Levitan,et al.  A Computational Model of Lateralization and Asymmetries in Cortical Maps , 2000, Neural Computation.

[71]  Paul A Yates,et al.  Topographic Mapping from the Retina to the Midbrain Is Controlled by Relative but Not Absolute Levels of EphA Receptor Signaling , 2000, Cell.

[72]  N. Swindale,et al.  How many maps are there in visual cortex? , 2000, Cerebral cortex.

[73]  Klaus Obermayer,et al.  The effect of intracortical competition on the formation of topographic maps in models of Hebbian learning , 2000, Biological Cybernetics.

[74]  John G. Flanagan,et al.  Genetic Analysis of Ephrin-A2 and Ephrin-A5 Shows Their Requirement in Multiple Aspects of Retinocollicular Mapping , 2000, Neuron.

[75]  David H. Goldberg,et al.  Structured Long-Range Connections Can Provide a Scaffold for Orientation Maps , 2000, The Journal of Neuroscience.

[76]  G. Goodhill,et al.  Analysis of the elastic net model applied to the formation of ocular dominance and orientation columns. , 2000, Network.

[77]  Peter Dayan Competition and Arbors in Ocular Dominance , 2000, NIPS.

[78]  Geoffrey J. Goodhill,et al.  Retinotectal maps: molecules, models and misplaced data , 1999, Trends in Neurosciences.

[79]  N. Shadbolt,et al.  A Neurotrophic Model of the Development of the Retinogeniculocortical Pathway Induced by Spontaneous Retinal Waves , 1999, The Journal of Neuroscience.

[80]  F. Wolf,et al.  Theory of ocular dominance pattern formation. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[81]  K. Miller,et al.  Correlation-Based Development of Ocularly Matched Orientation and Ocular Dominance Maps: Determination of Required Input Activities , 1998, The Journal of Neuroscience.

[82]  Klaus Obermayer,et al.  The Role of Lateral Cortical Competition in Ocular Dominance Development , 1998, NIPS.

[83]  M. Crawford Column spacing in normal and visually deprived monkeys , 1998, Experimental Brain Research.

[84]  Ocular dominance and orientation columns , 1998 .

[85]  R. L. Meyer,et al.  Roger Sperry and his chemoaffinity hypothesis , 1998, Neuropsychologia.

[86]  F. Wolf,et al.  Spontaneous pinwheel annihilation during visual development , 1998, Nature.

[87]  Fred Wolf,et al.  The layout of orientation and ocular dominance domains in area 17 of strabismic cats , 1998, The European journal of neuroscience.

[88]  N. Shadbolt,et al.  Competition for Neurotrophic Factors: Ocular Dominance Columns , 1998, The Journal of Neuroscience.

[89]  H Honda,et al.  Topographic mapping in the retinotectal projection by means of complementary ligand and receptor gradients: a computer simulation study. , 1998, Journal of theoretical biology.

[90]  N. Swindale,et al.  Application of Kohonen's self–organizing feature map algorithm to cortical maps of orientation and direction preference , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[91]  Theo Geisel,et al.  Breaking Rotational Symmetry in a Self-Organizing Map Model for Orientation Map Development , 1998, Neural Computation.

[92]  David G. Jones,et al.  Spacing of cytochrome oxidase blobs in visual cortex of normal and strabismic monkeys. , 1998, Cerebral Cortex.

[93]  Terrence J. Sejnowski,et al.  Constrained Optimization for Neural Map Formation: A Unifying Framework for Weight Growth and Normalization , 1998, Neural Computation.

[94]  M. Stryker,et al.  The role of visual experience in the development of columns in cat visual cortex. , 1998, Science.

[95]  Cornelius Weber,et al.  DEVELOPMENT AND REGENERATION OF THE RETINOTECTAL MAP IN GOLDFISH : A COMPUTATIONAL STUDY , 1997 .

[96]  G B Ermentrout,et al.  A model of ocular dominance column development by competition for trophic factor. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[97]  N. Tumosa,et al.  Alternating monocular exposure increases the spacing of ocularity domains in area 17 of cats , 1997, Visual Neuroscience.

[98]  Terrence J. Sejnowski,et al.  A Unifying Objective Function for Topographic Mappings , 1997, Neural Computation.

[99]  Helge J. Ritter,et al.  The Joint Development of Orientation and Ocular Dominance: Role of Constraints , 1997, Neural Computation.

[100]  G. Goodhill,et al.  Influences on the global structure of cortical maps , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[101]  M. Weliky,et al.  Disruption of orientation tuning visual cortex by artificially correlated neuronal activity , 1997, Nature.

[102]  Risto Miikkulainen,et al.  Topographic Receptive Fields and Patterned Lateral Interaction in a Self-Organizing Model of the Primary Visual Cortex , 1997, Neural Computation.

[103]  Theo Geisel,et al.  Analysis of ocular dominance pattern formation in a high-dimensional self-organizing-map model , 1997 .

[104]  Nigel Shadbolt,et al.  A mathematical model of activity–dependent, anatomical segregation induced by competition for neurotrophic support , 1996, Biological Cybernetics.

[105]  J. Horton,et al.  Intrinsic Variability of Ocular Dominance Column Periodicity in Normal Macaque Monkeys , 1996, The Journal of Neuroscience.

[106]  Harry G. Barrow,et al.  A Self-Organizing Model of Color Blob Formation , 1996, Neural Computation.

[107]  John G Flanagan,et al.  Topographically Specific Effects of ELF-1 on Retinal Axon Guidance In Vitro and Retinal Axon Mapping In Vivo , 1996, Cell.

[108]  K. Pawelzik,et al.  Organization of the visual cortex , 1996, Nature.

[109]  James M. Bower,et al.  Computational Neuroscience: Trends in Research 1995 , 1996 .

[110]  N. Swindale The development of topography in the visual cortex: a review of models. , 1996, Network.

[111]  M. Livingstone,et al.  Ocular dominance columns in New World monkeys , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[112]  Alan L. Yuille,et al.  Dimension reduction, generalized deformable models and the development of ocularity and orientation , 1996, Neural Networks.

[113]  Tobias Bonhoeffer,et al.  Development of identical orientation maps for two eyes without common visual experience , 1996, Nature.

[114]  G. Goodhill,et al.  Theory meets experiment: correlated neural activity helps determine ocular dominance column periodicity , 1995, Trends in Neurosciences.

[115]  Klaus Schulten,et al.  Models of Orientation and Ocular Dominance Columns in the Visual Cortex: A Critical Comparison , 1995, Neural Computation.

[116]  Graeme Mitchison,et al.  A Type of Duality between Self-Organizing Maps and Minimal Wiring , 1995, Neural Computation.

[117]  Hans-Ulrich Bauer,et al.  Development of Oriented Ocular Dominance Bands as a Consequence of Areal Geometry , 1995, Neural Computation.

[118]  S Löwel,et al.  Ocular dominance column development: strabismus changes the spacing of adjacent columns in cat visual cortex. , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[119]  Stephen Grossberg,et al.  Rules for the cortical map of ocular dominance and orientation columns , 1994, Neural Networks.

[120]  David J. Willshaw,et al.  Elastic Net Model of Ocular Dominance: Overall Stripe Pattern and Monocular Deprivation , 1994, Neural Computation.

[121]  KD Miller A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON- and OFF-center inputs , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[122]  K. Obermayer,et al.  Geometry of orientation and ocular dominance columns in monkey striate cortex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[123]  P. Dayan,et al.  A correlational model for the development of disparity selectivity in visual cortex that depends on prenatal and postnatal phases. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[124]  Peter Dayan,et al.  Arbitrary Elastic Topologies and Ocular Dominance , 1993, Neural Computation.

[125]  K. Obermayer,et al.  Statistical-mechanical analysis of self-organization and pattern formation during the development of visual maps. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[126]  M. Miyashita,et al.  A mathematical model for the self-organization of orientation columns in visual cortex. , 1992, Neuroreport.

[127]  Peter Dayan,et al.  Perturbing Hebbian Rules , 1991, NIPS.

[128]  R. C. Van Sluyters,et al.  A computational model for the overall pattern of ocular dominance , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[129]  G. Edelman,et al.  Spatial signaling in the development and function of neural connections. , 1991, Cerebral cortex.

[130]  H. Ritter,et al.  A principle for the formation of the spatial structure of cortical feature maps. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[131]  Richard Durbin,et al.  A dimension reduction framework for understanding cortical maps , 1990, Nature.

[132]  R Linsker,et al.  Perceptual neural organization: some approaches based on network models and information theory. , 1990, Annual review of neuroscience.

[133]  D H Perkel,et al.  Competitive and positional cues in the patterning of nerve connections. , 1990, Journal of neurobiology.

[134]  David Willshaw,et al.  Application of the elastic net algorithm to the formation of ocular dominance stripes , 1990 .

[135]  David J C MacKaytS,et al.  Analysis of Linsker's application of Hebbian rules to linear networks , 1990 .

[136]  Ralph Linsker,et al.  How to Generate Ordered Maps by Maximizing the Mutual Information between Input and Output Signals , 1989, Neural Computation.

[137]  Richard Szeliski,et al.  An Analysis of the Elastic Net Approach to the Traveling Salesman Problem , 1989, Neural Computation.

[138]  K. Miller,et al.  Ocular dominance column development: analysis and simulation. , 1989, Science.

[139]  Jack D. Cowan,et al.  Development and Regeneration of Eye-Brain Maps: A Computational Model , 1989, NIPS.

[140]  S B Udin,et al.  Formation of topographic maps. , 1988, Annual review of neuroscience.

[141]  Alfred Gierer,et al.  Directional cues for growing axons forming the retinotectal projection , 1987 .

[142]  Richard Durbin,et al.  An analogue approach to the travelling salesman problem using an elastic net method , 1987, Nature.

[143]  Eric E. Sumner Technology perspective: Network security: Making the problem the solution , 1987, IEEE Network.

[144]  R Linsker,et al.  From basic network principles to neural architecture: emergence of spatial-opponent cells. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[145]  R. Linsker From basic network principles to neural architecture (series) , 1986 .

[146]  S. Levay,et al.  The complete pattern of ocular dominance stripes in the striate cortex and visual field of the macaque monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[147]  G. Edelman,et al.  Molecular bases of neural development , 1985 .

[148]  A Gierer,et al.  Model for the retino-tectal projection , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[149]  N. Swindale,et al.  A model for the formation of orientation columns , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[150]  T. Kohonen Self-organized formation of topographically correct feature maps , 1982 .

[151]  J. Cowan,et al.  Specificity and plasticity of retinotectal connections: a computational model , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[152]  S. Fraser,et al.  Differential adhesion approach to the patterning of nerve connections. , 1980, Developmental biology.

[153]  N. Swindale A model for the formation of ocular dominance stripes , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[154]  S. Amari Topographic organization of nerve fields , 1979, Neuroscience Letters.

[155]  D J Willshaw,et al.  A marker induction mechanism for the establishment of ordered neural mappings: its application to the retinotectal problem. , 1979, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[156]  A. Cowey Cortical Maps and Visual Perception the Grindley Memorial Lecture* , 1979, The Quarterly journal of experimental psychology.

[157]  M. Stryker,et al.  Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation. , 1978, The Journal of physiology.

[158]  Roman Bek,et al.  Discourse on one way in which a quantum-mechanics language on the classical logical base can be built up , 1978, Kybernetika.

[159]  C. Malsburg,et al.  How to label nerve cells so that they can interconnect in an ordered fashion. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[160]  R. M. Gaze,et al.  The arrow model: retinotectal specificity and map formation in the goldfish visual system , 1976, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[161]  C. Malsburg,et al.  How patterned neural connections can be set up by self-organization , 1976, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[162]  C. Malsburg,et al.  A mechanism for producing continuous neural mappings: ocularity dominance stripes and ordered retino , 1976 .

[163]  D. Willshaw,et al.  On a role for competition in the formation of patterned neural connexions , 1975, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[164]  S H Chung,et al.  In search of the rules for nerve connections. , 1974, Cell.

[165]  R. M. Gaze,et al.  The Visual System and “Neuronal Specificity” , 1972, Nature.

[166]  R. Sperry CHEMOAFFINITY IN THE ORDERLY GROWTH OF NERVE FIBER PATTERNS AND CONNECTIONS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[167]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[168]  F. Wolf,et al.  Sequential Bifurcation and Dynamic Rearrangement of Columnar Patterns during Cortical Development , .