Single Basepoint Subdivision Schemes for Manifold-valued Data: Time-Symmetry Without Space-Symmetry
暂无分享,去创建一个
Gang Xie | Tom Duchamp | Thomas Pok-Yin Yu | T. Duchamp | T. Yu | G. Xie
[1] I. Daubechies,et al. Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .
[2] Peter Schröder,et al. Multiscale Representations for Manifold-Valued Data , 2005, Multiscale Model. Simul..
[3] C. Micchelli,et al. Stationary Subdivision , 1991 .
[4] Y. Meyer. Wavelets and Operators , 1993 .
[5] David L. Donoho,et al. Interpolating Wavelet Transforms , 1992 .
[6] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[7] L. Auslander,et al. HOLONOMY OF FLAT AFFINELY CONNECTED MANIFOLDS , 1955 .
[8] L. Schumaker,et al. Recent advances in wavelet analysis , 1995 .
[9] Richard Courant,et al. Wiley Classics Library , 2011 .
[10] J. Dieudonne,et al. Invariant theory, old and new , 1971 .
[11] Walter Gautschi,et al. Approximation and Computation , 2011 .
[12] Philipp Grohs,et al. Smoothness equivalence properties of univariate subdivision schemes and their projection analogues , 2009, Numerische Mathematik.
[13] Gang Xie,et al. Smoothness Equivalence Properties of General Manifold-Valued Data Subdivision Schemes , 2008, Multiscale Model. Simul..
[14] Thierry BLUzAbstract. SIMPLE REGULARITY CRITERIA FOR SUBDIVISION SCHEMES , 1997 .
[15] T. Yu,et al. Smoothness Analysis of Nonlinear Subdivision Schemes of Homogeneous and Affine Invariant Type , 2005 .
[16] Valeri V.Dolotin. On Invariant Theory , 1995, alg-geom/9512011.
[17] Gang Xie,et al. Invariance property of proximity conditions in nonlinear subdivision , 2012, J. Approx. Theory.
[18] Xinghua Gao,et al. Symmetric Spaces , 2014 .
[19] Esfandiar Nava Yazdani,et al. On Donoho's Log-Exp Subdivision Scheme: Choice of Retraction and Time-Symmetry , 2011, Multiscale Model. Simul..
[20] Nira Dyn,et al. Convergence and C1 analysis of subdivision schemes on manifolds by proximity , 2005, Comput. Aided Geom. Des..
[21] K. Nomizu. Invariant Affine Connections on Homogeneous Spaces , 1954 .
[22] Levent Tunçel,et al. Optimization algorithms on matrix manifolds , 2009, Math. Comput..
[23] J. S. Wang. Statistical Theory of Superlattices with Long-Range Interaction. I. General Theory , 1938 .
[24] Philipp Grohs,et al. A General Proximity Analysis of Nonlinear Subdivision Schemes , 2010, SIAM J. Math. Anal..
[25] J. Craggs. Applied Mathematical Sciences , 1973 .
[26] K. Nomizu,et al. Foundations of Differential Geometry , 1963 .
[27] Ron Goldman,et al. Nonlinear subdivision through nonlinear averaging , 2008, Comput. Aided Geom. Des..
[28] R. Adler,et al. Newton's method on Riemannian manifolds and a geometric model for the human spine , 2002 .
[29] T. Yu,et al. Smoothness equivalence properties of interpolatory Lie group subdivision schemes , 2010 .
[30] Johannes Wallner. Smoothness Analysis of Subdivision Schemes by Proximity , 2006 .
[31] D. Donoho. Smooth Wavelet Decompositions with Blocky Coefficient Kernels , 1993 .
[32] Philipp Grohs,et al. Smoothness of interpolatory multivariate subdivision in Lie groups , 2009 .
[33] R. Abraham,et al. Manifolds, Tensor Analysis, and Applications , 1983 .
[34] Thomas Pok-Yin Yu,et al. How Data Dependent is a Nonlinear Subdivision Scheme? A Case Study Based on Convexity Preserving Subdivision , 2006, SIAM J. Numer. Anal..
[35] T. Yu,et al. On a Linearization Principle for Nonlinear p-mean Subdivision Schemes , 2003 .
[36] Gang Xie,et al. Smoothness Equivalence Properties of Manifold-Valued Data Subdivision Schemes Based on the Projection Approach , 2007, SIAM J. Numer. Anal..