650-nm All-Polymer Thermo-Optic Waveguide Switch Arrays Based on Novel Organic–Inorganic Grafting PMMA Materials

All-polymer thermo-optic (TO) waveguide switch arrays at 650-nm wavelength based on novel organic-inorganic grafting poly(methyl methacrylate) (PMMA) materials are successfully designed and fabricated. The thermal stability and optical properties of the sol-gel materials are studied. The TO coefficient of organic-inorganic grafting PMMA core material is obtained as -1.65×104 °C-1. The characteristic parameters of the embedded waveguide and arrayed electrode heaters are carefully designed and simulated. The propagation loss of a 4-μm wide straight waveguide is 0.85 dB cm-1. The M-Z interferometer TO switch on-off time is 600 μs. The extinction ratio is ~ 8.2 dB and the applied electric power as the switching power is ~ 22.6 mW. The device could have great potential in biomedical applications. The technique could be well suited for polymer optical fiber integrated network systems.

[1]  R.T. Chen,et al.  Polarization-independent all-wave polymer-based TIR thermooptic switch , 2006, Journal of Lightwave Technology.

[2]  Lei Xu,et al.  Compact asymmetric 1 × 2 multimode interference optical switch , 2009 .

[3]  Bjarke Rose,et al.  Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings , 2011 .

[4]  Timo Aalto,et al.  Sub-s Switching Time in Silicon-on-Insulator Mach – Zehnder Thermooptic Switch , 2004 .

[5]  Lei Xu,et al.  Thermo-optic properties of sol-gel-fabricated organic–inorganic hybrid waveguides , 2003 .

[6]  Mervyn J. Kowalsky,et al.  Behaviour of intrinsic polymer optical fibre sensor for large-strain applications , 2007 .

[7]  N. Xie,et al.  Very Low-Power, Polarization-Independent, and High-Speed Polymer Thermooptic Switch , 2009, IEEE Photonics Technology Letters.

[8]  Norbert Keil,et al.  Athermal polarisation-independent arrayed- waveguide grating (AWG) multiplexer using an all-polymer approach , 2001 .

[9]  Bing Zhang,et al.  A new solution of reducing polymer optical fiber losses , 2006 .

[11]  K. Kawano,et al.  Introduction to Optical Waveguide Analysis , 2001 .

[12]  E. Pun,et al.  Optical Amplification in Eu $^{3+}$-Doped DNA-Based Biopolymer , 2011, IEEE Photonics Technology Letters.

[13]  Jang‐Joo Kim,et al.  Temperature-insensitive flexible polymer wavelength filter fabricated on polymer substrates , 2005 .

[14]  Daniel Puiu Poenar,et al.  Design and fabrication of Poly(dimethylsiloxane) arrayed waveguide grating. , 2010, Optics express.

[15]  M. Qian,et al.  Design and fabrication of single mode rib waveguides using sol–gel derived organic–inorganic hybrid materials , 2008 .

[16]  K. Meerholz,et al.  Embedding Organic Light‐Emitting Diodes into Channel Waveguide Structures , 2008 .

[17]  Sang-Pil Han,et al.  Fabrication of 10-Channel Polymer Thermo-Optic Digital Optical Switch Array , 2009, IEEE Photonics Technology Letters.

[18]  Irwan R. Husdi,et al.  Sensing characteristics of plastic optical fibres measured by optical time-domain reflectometry , 2004 .

[19]  Karim Hassan,et al.  Thermo-optic plasmo-photonic mode interference switches based on dielectric loaded waveguides , 2011 .

[20]  D. Bradley,et al.  Optical gain at 650 nm from a polymer waveguide with dye-doped cladding , 2005 .

[21]  鬼頭 勤,et al.  Introduction to optical waveguide analysis : solving Maxwell's equations and the Schrödinger equation , 2001 .

[22]  B. Lebeau,et al.  Hybrid Materials for Optics and Photonics , 2011 .

[23]  R. Bernini,et al.  Slot and Layer-Slot Waveguide in the Visible Spectrum , 2011, Journal of Lightwave Technology.

[24]  Fei Wang,et al.  Electro-Optic Modulator Based on Novel Organic-Inorganic Hybrid Nonlinear Optical Materials , 2012, IEEE Journal of Quantum Electronics.

[25]  B. Wang,et al.  Optical amplification in Er/Yb silicate strip loaded waveguide , 2011 .

[26]  H. Naito,et al.  Optical properties of poly(di-n-hexylsilane)–zirconia hybrid thin films: suppression of thermochromism and large thermo-optic coefficients , 2005 .

[27]  Masatoshi Yonemura,et al.  Polymer waveguide module for visible wavelength division multiplexing plastic optical fiber communication. , 2005, Optics letters.

[28]  P. Sarro,et al.  TiO2 freestanding thin film as evanescent waveguide sensor for biomedical application , 2011, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.

[29]  Light propagation in single mode polymer nanotubes integrated on photonic circuits , 2011 .

[30]  S. Kuo,et al.  Thermal behavior and specific interaction in high glass transition temperature PMMA copolymer , 2003 .

[31]  J. Baumberg,et al.  Exciton switching and Peierls transitions in hybrid inorganic-organic self-assembled quantum wells , 2009 .

[32]  M. Ramuz,et al.  Coupling light from an organic light emitting diode (OLED) into a single-mode waveguide: Toward monolithically integrated optical sensors , 2009 .

[33]  K. Peters Polymer optical fiber sensors—a review , 2010 .

[34]  T. Aalto,et al.  Sub-/spl mu/s switching time in silicon-on-insulator Mach-Zehnder thermooptic switch , 2004, IEEE Photonics Technology Letters.