Store-Independent Activation of Orai1 by SPCA2 in Mammary Tumors

Ca(2+) is an essential and ubiquitous second messenger. Changes in cytosolic Ca(2+) trigger events critical for tumorigenesis, such as cellular motility, proliferation, and apoptosis. We show that an isoform of Secretory Pathway Ca(2+)-ATPase, SPCA2, is upregulated in breast cancer-derived cells and human breast tumors, and suppression of SPCA2 attenuates basal Ca(2+) levels and tumorigenicity. Contrary to its conventional role in Golgi Ca(2+) sequestration, expression of SPCA2 increased Ca(2+) influx by a mechanism dependent on the store-operated Ca(2+) channel Orai1. Unexpectedly, SPCA2-Orai1 signaling was independent of ER Ca(2+) stores or STIM1 and STIM2 sensors and uncoupled from Ca(2+)-ATPase activity of SPCA2. Binding of the SPCA2 amino terminus to Orai1 enabled access of its carboxyl terminus to Orai1 and activation of Ca(2+) influx. Our findings reveal a signaling pathway in which the Orai1-SPCA2 complex elicits constitutive store-independent Ca(2+) signaling that promotes tumorigenesis.

[1]  L. Missiaen,et al.  Calcium in the Golgi apparatus. , 2007, Cell calcium.

[2]  J. Maller,et al.  Calcium, calmodulin, and CaMKII requirement for initiation of centrosome duplication in Xenopus egg extracts. , 2002, Nature Reviews Molecular Cell Biology.

[3]  Joseph P. Yuan,et al.  STIM1 carboxyl-terminus activates native SOC, Icrac and TRPC1 channels , 2006, Nature Cell Biology.

[4]  E. Lamperti,et al.  Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance , 2008, Nature Immunology.

[5]  Yang Zhang,et al.  Template‐based modeling and free modeling by I‐TASSER in CASP7 , 2007, Proteins.

[6]  Michael D. Cahalan,et al.  STIM1, an essential and conserved component of store-operated Ca2+ channel function , 2005, The Journal of cell biology.

[7]  J. Chen,et al.  Phenotypic Screening of Mutations in Pmr1, the Yeast Secretory Pathway Ca2+/Mn2+-ATPase, Reveals Residues Critical for Ion Selectivity and Transport* , 2000, The Journal of Biological Chemistry.

[8]  W. Lee,et al.  Calcium transport and signaling in the mammary gland: targets for breast cancer. , 2006, Biochimica et biophysica acta.

[9]  R. Rao,et al.  A Novel Isoform of the Secretory Pathway Ca2+,Mn2+-ATPase, hSPCA2, Has Unusual Properties and Is Expressed in the Brain* , 2005, Journal of Biological Chemistry.

[10]  Rajender K. Motiani,et al.  Stim1 and Orai1 Mediate CRAC Currents and Store-Operated Calcium Entry Important for Endothelial Cell Proliferation , 2008, Circulation research.

[11]  J. Downward,et al.  Control of ras activation. , 1996, Cancer surveys.

[12]  Jussi Aittoniemi,et al.  SUR1: a unique ATP-binding cassette protein that functions as an ion channel regulator , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[13]  L. Missiaen,et al.  The Secretory Pathway Ca2+/Mn2+-ATPase 2 Is a Golgi-localized Pump with High Affinity for Ca2+ Ions* , 2005, Journal of Biological Chemistry.

[14]  Yudong D. He,et al.  A Gene-Expression Signature as a Predictor of Survival in Breast Cancer , 2002 .

[15]  Y. Horio,et al.  Regulation of Ca2+ mobilization by prolactin in mammary gland cells: possible role of secretory pathway Ca2+-ATPase type 2. , 2007, Biochemical and biophysical research communications.

[16]  Howard Y. Chang,et al.  Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[17]  M. Berridge,et al.  Calcium signalling: dynamics, homeostasis and remodelling , 2003, Nature reviews. Molecular cell biology.

[18]  J. Putney,et al.  Store-operated calcium channels. , 2005, Physiological reviews.

[19]  Peter J. Cullen,et al.  Integration of calcium and RAS signalling , 2002, Nature Reviews Molecular Cell Biology.

[20]  J. Kinet,et al.  The long and arduous road to CRAC. , 2007, Cell calcium.

[21]  S. Cook,et al.  Recent advances in Ca(2+)-dependent Ras regulation and cell proliferation. , 2006, Cell calcium.

[22]  J. Skolnick,et al.  Ab initio modeling of small proteins by iterative TASSER simulations , 2007, BMC Biology.

[23]  T. Deerinck,et al.  STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane , 2005, Nature.

[24]  S. F. Konieczny,et al.  MIST1 regulates the pancreatic acinar cell expression of Atp2c2, the gene encoding secretory pathway calcium ATPase 2. , 2010, Experimental cell research.

[25]  J. L. Bos,et al.  ras oncogenes in human cancer: a review. , 1989, Cancer research.

[26]  Y. Wei,et al.  An N-terminal EF hand-like motif modulates ion transport by Pmr1, the yeast Golgi Ca(2+)/Mn(2+)-ATPase. , 1999, Biochemistry.

[27]  H. Llewelyn Roderick,et al.  Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival , 2008, Nature Reviews Cancer.

[28]  Shenyuan L. Zhang,et al.  Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai , 2006, Nature.

[29]  E. Clementi,et al.  Pharmacological and functional properties of voltage-independent Ca2+ channels. , 1996, Cell calcium.

[30]  Tobias Meyer,et al.  STIM Is a Ca2+ Sensor Essential for Ca2+-Store-Depletion-Triggered Ca2+ Influx , 2005, Current Biology.

[31]  R. Tsai,et al.  Using a eukaryotic GST fusion vector for proteins difficult to express in E. coli. , 1997, BioTechniques.

[32]  J. Billingsley,et al.  CRACM1 Multimers Form the Ion-Selective Pore of the CRAC Channel , 2006, Current Biology.

[33]  Michael F. Olson,et al.  RAS and RHO GTPases in G1-phase cell-cycle regulation , 2004, Nature Reviews Molecular Cell Biology.

[34]  Genee Y. Lee,et al.  Localization of plasma membrane and secretory calcium pumps in the mammary gland. , 2008, Biochemical and biophysical research communications.

[35]  K. Fukasawa Oncogenes and tumour suppressors take on centrosomes , 2007, Nature Reviews Cancer.

[36]  H. Singer,et al.  Evidence for STIM1‐ and Orail‐dependent storeoperated calcium influx through ICRAC in vascular smooth muscle cells: role in proliferation and migration , 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[37]  Lin Chen,et al.  Transcriptional regulation by calcium, calcineurin, and NFAT. , 2003, Genes & development.

[38]  Onn Brandman,et al.  STIM2 Is a Feedback Regulator that Stabilizes Basal Cytosolic and Endoplasmic Reticulum Ca2+ Levels , 2007, Cell.

[39]  Y. Gwack,et al.  Biochemical and Functional Characterization of Orai Proteins* , 2007, Journal of Biological Chemistry.

[40]  Y. Gwack,et al.  Signalling to transcription: store-operated Ca2+ entry and NFAT activation in lymphocytes. , 2007, Cell calcium.

[41]  Shenyuan L. Zhang,et al.  Molecular basis of the CRAC channel. , 2007, Cell calcium.

[42]  G. Crabtree,et al.  NFAT Signaling Choreographing the Social Lives of Cells , 2002, Cell.

[43]  R. Mamillapalli,et al.  Switching of G-protein Usage by the Calcium-sensing Receptor Reverses Its Effect on Parathyroid Hormone-related Protein Secretion in Normal Versus Malignant Breast Cells* , 2008, Journal of Biological Chemistry.

[44]  Richard S Lewis,et al.  The molecular choreography of a store-operated calcium channel , 2007, Nature.

[45]  Yang Zhang,et al.  I-TASSER server for protein 3D structure prediction , 2008, BMC Bioinformatics.

[46]  Gideon Bollag,et al.  GTPase activating proteins: critical regulators of intracellular signaling. , 2002, Biochimica et biophysica acta.

[47]  Tobias Meyer,et al.  STIM Is a Ca 2+ Sensor Essential for Ca 2+ -Store-Depletion-Triggered Ca 2+ Influx , 2005 .

[48]  H. Kahr,et al.  Dynamic Coupling of the Putative Coiled-coil Domain of ORAI1 with STIM1 Mediates ORAI1 Channel Activation* , 2008, Journal of Biological Chemistry.

[49]  Elizabeth D. Covington,et al.  STIM1 Clusters and Activates CRAC Channels via Direct Binding of a Cytosolic Domain to Orai1 , 2009, Cell.

[50]  Anne E Carpenter,et al.  A Lentiviral RNAi Library for Human and Mouse Genes Applied to an Arrayed Viral High-Content Screen , 2006, Cell.

[51]  Sarah J. Roberts-Thomson,et al.  Calcium and cancer: targeting Ca2+ transport , 2007, Nature Reviews Cancer.

[52]  D. Clapham,et al.  Calcium signaling , 1995, Cell.

[53]  R. Plemper,et al.  The medial-Golgi ion pump Pmr1 supplies the yeast secretory pathway with Ca2+ and Mn2+ required for glycosylation, sorting, and endoplasmic reticulum-associated protein degradation. , 1998, Molecular biology of the cell.

[54]  Y. Gwack,et al.  A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT , 2006, Nature.

[55]  W. Lee,et al.  Peroxisome proliferator–activated receptor α in the human breast cancer cell lines MCF‐7 and MDA‐MB‐231 , 2002, Molecular carcinogenesis.

[56]  M. Morgan,et al.  Microcalcifications Associated with Breast Cancer: An Epiphenomenon or Biologically Significant Feature of Selected Tumors? , 2005, Journal of Mammary Gland Biology and Neoplasia.

[57]  Xin-Yun Huang,et al.  Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. , 2009, Cancer cell.

[58]  S. Cook,et al.  Recent advances in Ca(2+)-dependent Ras regulation and cell proliferation. , 2006, Cell calcium.

[59]  S. Lutsenko,et al.  The Distinct Roles of the N-terminal Copper-binding Sites in Regulation of Catalytic Activity of the Wilson's Disease Protein* , 2003, Journal of Biological Chemistry.

[60]  J. Lippolis,et al.  Null Mutation in the Gene Encoding Plasma Membrane Ca2+-ATPase Isoform 2 Impairs Calcium Transport into Milk* , 2004, Journal of Biological Chemistry.