Self-similarity of Siegel disks and Hausdorff dimension of Julia sets

Let f(z) = ez+ z, where θ is an irrational number of bounded type. According to Siegel, f is linearizable on a disk containing the origin. In this paper we show: • the Hausdorff dimension of the Julia set J(f) is strictly less than two; and • if θ is a quadratic irrational (such as the golden mean), then the Siegel disk for f is self-similar about the critical point. In the latter case, we also show the rescaled first-return maps converge exponentially fast to a system of commuting branched coverings of the complex plane.

[1]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[2]  C. McMullen Renormalization and 3-Manifolds Which Fiber over the Circle , 1996 .

[3]  Mitsuhiro Shishikura The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets , 1991 .

[4]  Edson de Faria,et al.  Asymptotic rigidity of scaling ratios for critical circle mappings , 1996, Ergodic Theory and Dynamical Systems.

[5]  Nicholas S. Manton,et al.  Universal scaling behaviour for iterated maps in the complex plane , 1983 .

[6]  D. Sullivan,et al.  Quasiconformal Homeomorphisms and Dynamics III. The Teichmüller Space of a Holomorphic Dynamical System , 1998 .

[7]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[8]  Olli Lehto,et al.  Quasiconformal mappings in the plane , 1973 .

[9]  A. Douady,et al.  Disques de Siegel et anneaux de Herman , 1987 .

[10]  John H. Hubbard,et al.  On the dynamics of polynomial-like mappings , 1985 .

[11]  Kari Astala,et al.  Area distortion of quasiconformal mappings , 1994 .

[12]  L. Ahlfors Conformal Invariants: Topics in Geometric Function Theory , 1973 .

[13]  Edson de Faria,et al.  RIGIDITY OF CRITICAL CIRCLE MAPPINGS I , 1997, math/9711214.

[14]  Carsten Lunde Petersen Local connectivity of some Julia sets containing a circle with an irrational rotation , 1996 .

[15]  Curtis T. McMullen,et al.  Complex Dynamics and Renormalization , 1994 .

[16]  L. Ahlfors,et al.  Lectures on quasiconformal mappings , 1966 .

[17]  C. McMullen Families of Rational Maps and Iterative Root-Finding Algorithms , 1987 .

[18]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[19]  Alan F. Beardon,et al.  Iteration of Rational Functions , 1991 .

[20]  鈴木 麻美,et al.  「On the Iteration of Analytic Functions」(木村俊房先生の仕事から) , 1998 .

[21]  P. Shiu An introduction to the theory of numbers (5th edition) , by I. Niven, H. S. Zuckerman and H. L. Montgomery. Pp 529. £14·50. 1991. ISBN 0-471-5460031 (Wiley) , 1991 .

[22]  C. McMullen Automorphisms of rational maps , 1988 .

[23]  D. H. Hamilton,et al.  ON THE AREA DISTORTION BY QUASICONFORMAL MAPPINGS , 1995 .

[24]  G. Swiatek On critical circle homeomorphisms , 1998 .

[25]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[26]  Quasiconformal Isotopies , 1986 .

[27]  John H. Hubbard,et al.  A proof of Thurston's topological characterization of rational functions , 1993 .

[28]  A. Douady,et al.  Conformally natural extension of homeomorphisms of the circle , 1986 .

[29]  Michael Widom,et al.  Renormalization group analysis of quasi-periodicity in analytic maps , 1983 .