An enriched FEM technique for modeling hydraulically driven cohesive fracture propagation in impermeable media with frictional natural faults: Numerical and experimental investigations

In this paper, an enriched finite element technique is presented to simulate the mechanism of interaction between the hydraulic fracturing and frictional natural fault in impermeable media. The technique allows modeling the discontinuities independent of the finite element mesh by introducing additional DOFs. The coupled equilibrium and flow continuity equations are solved using a staggered Newton solution strategy, and an algorithm is proposed on the basis of fixed‐point iteration concept to impose the flow condition at the hydro‐fracture mouth. The cohesive crack model is employed to introduce the nonlinear fracturing process occurring ahead of the hydro‐fracture tip. Frictional contact is modeled along the natural fault using the penalty method within the framework of plasticity theory of friction. Moreover, an experimental investigation is carried out to perform the hydraulic fracturing experimental test in fractured media under plane strain condition. The results of several numerical and experimental simulations are presented to verify the accuracy and robustness of the proposed computational algorithm as well as to investigate the mechanisms of interaction between the hydraulically driven fracture and frictional natural fault. Copyright © 2015 John Wiley & Sons, Ltd.

[1]  A. Khoei Extended Finite Element Method: Theory and Applications , 2015 .

[2]  Amir R. Khoei,et al.  A mesh-independent finite element formulation for modeling crack growth in saturated porous media based on an enriched-FEM technique , 2014, International Journal of Fracture.

[3]  Amir R. Khoei,et al.  The extended finite element method for large deformation ductile fracture problems with a non-local damage-plasticity model , 2013 .

[4]  A. Khoei,et al.  An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model , 2013 .

[5]  A. Khoei,et al.  Hydro‐mechanical modeling of cohesive crack propagation in multiphase porous media using the extended finite element method , 2013 .

[6]  Massood Mofid,et al.  Modeling of dynamic cohesive fracture propagation in porous saturated media , 2011 .

[7]  Ahmad Ghassemi,et al.  Simulation of hydraulic fracture propagation near a natural fracture using virtual multidimensional internal bonds , 2011 .

[8]  Ronaldo I. Borja,et al.  Stabilized low-order finite elements for frictional contact with the extended finite element method , 2010 .

[9]  Arcady Dyskin,et al.  Orthogonal crack approaching an interface , 2009 .

[10]  A. D. Taleghani Analysis of hydraulic fracture propagation in fractured reservoirs: An improved model for the interaction between induced and natural fractures , 2009 .

[11]  B. Lecampion An extended finite element method for hydraulic fracture problems , 2009 .

[12]  Ignacio Carol,et al.  Coupled HM analysis using zero‐thickness interface elements with double nodes. Part I: Theoretical model , 2008 .

[13]  Ronaldo I. Borja,et al.  A contact algorithm for frictional crack propagation with the extended finite element method , 2008 .

[14]  Emmanuel M Detournay,et al.  Plane strain propagation of a hydraulic fracture in a permeable rock , 2008 .

[15]  Julien Réthoré,et al.  A two-scale model for fluid flow in an unsaturated porous medium with cohesive cracks , 2008 .

[16]  Robert G. Jeffrey,et al.  Escape of fluid-driven fractures from frictional bedding interfaces : A numerical study , 2008 .

[17]  Robert G. Jeffrey,et al.  Deflection and propagation of fluid-driven fractures at frictional bedding interfaces: A numerical investigation , 2007 .

[18]  Amir R. Khoei,et al.  An enriched finite element algorithm for numerical computation of contact friction problems , 2007 .

[19]  Bernhard A. Schrefler,et al.  Mesh adaptation and transfer schemes for discrete fracture propagation in porous materials , 2007 .

[20]  Julien Réthoré,et al.  A two‐scale approach for fluid flow in fractured porous media , 2006 .

[21]  Robert G. Jeffrey,et al.  The role of friction and secondary flaws on deflection and re‐initiation of hydraulic fractures at orthogonal pre‐existing fractures , 2006 .

[22]  Alain Combescure,et al.  Appropriate extended functions for X-FEM simulation of plastic fracture mechanics , 2006 .

[23]  Bernhard A. Schrefler,et al.  On adaptive refinement techniques in multi-field problems including cohesive fracture , 2006 .

[24]  T. Belytschko,et al.  Analysis of three‐dimensional crack initiation and propagation using the extended finite element method , 2005 .

[25]  John E. Dolbow,et al.  On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method , 2004 .

[26]  T. Belytschko,et al.  A method for multiple crack growth in brittle materials without remeshing , 2004 .

[27]  T. Belytschko,et al.  A method for growing multiple cracks without remeshing and its application to fatigue crack growth , 2004 .

[28]  Emmanuel M Detournay,et al.  Propagation Regimes of Fluid-Driven Fractures in Impermeable Rocks , 2004 .

[29]  H. Matthies,et al.  Partitioned Strong Coupling Algorithms for Fluid-Structure-Interaction , 2003 .

[30]  P. Wriggers,et al.  Computational Contact Mechanics , 2002 .

[31]  T. Belytschko,et al.  Extended finite element method for cohesive crack growth , 2002 .

[32]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[33]  L. J. Sluys,et al.  A new method for modelling cohesive cracks using finite elements , 2001 .

[34]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[35]  Emmanuel M Detournay,et al.  The Tip Region of a Fluid-Driven Fracture in an Elastic Medium , 2000 .

[36]  C. Farhat,et al.  Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems , 2000 .

[37]  T. Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[38]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[39]  Bernhard A. Schrefler,et al.  Standard staggered and staggered Newton schemes in thermo-hydro-mechanical problems , 1997 .

[40]  Jean-Herve Prevost,et al.  PARTITIONED SOLUTION PROCEDURE FOR SIMULTANEOUS INTEGRATION OF COUPLED-FIELD PROBLEMS , 1997 .

[41]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[42]  O. C. Zienkiewicz,et al.  Unconditionally stable staggered solution procedure for soil-pore fluid interaction problems , 1988 .

[43]  Leon M Keer,et al.  Growth rate of a penny-shaped crack in hydraulic fracturing of rocks , 1976 .

[44]  J. Geertsma,et al.  A Rapid Method of Predicting Width and Extent of Hydraulically Induced Fractures , 1969 .

[45]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[46]  Kurt Maute,et al.  The Extended Finite Element Method , 2014 .

[47]  Benoît Carrier,et al.  Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model , 2012 .

[48]  Massood Mofid,et al.  Modeling of cohesive crack growth in partially saturated porous media; a study on the permeability of cohesive fracture , 2011 .

[49]  Jon E. Olson,et al.  Analysis of Multistranded Hydraulic Fracture Propagation: An Improved Model for the Interaction Between Induced and Natural Fractures , 2009 .

[50]  Received February,et al.  Interaction between Hydraulic and Natural Fractures , 2008 .

[51]  Josep María Segura Serra,et al.  Coupled hm analysis using zero-thickness interface elements with double nodes , 2007 .

[52]  J. Adachia,et al.  Computer simulation of hydraulic fractures , 2007 .

[53]  Thomas J. Boone,et al.  A numerical procedure for simulation of hydraulically-driven fracture propagation in poroelastic media , 1990 .

[54]  Anthony R. Ingraffea,et al.  An Investigation of the Material Parameters That Govern the Behavior of Fractures Approaching Rock Interfaces , 1987 .

[55]  J. Oden Exterior Penalty Methods for Contact Problems in Elasticity , 1981 .

[56]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[57]  G. I. Barenblatt The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks , 1959 .