A parallel dual marching cubes approach to quad only surface reconstruction

We present a novel method that reconstructs surfaces from volume data using a dual marching cubes approach without lookup tables. The method generates quad only meshes which are consistent across cell borders, i.e., they are manifold and watertight. Vertices are positioned exactly on the reconstructed surface almost everywhere, leading to higher accuracy than other reconstruction methods. A halfedge data structure is used for storing the meshes which is convenient for further processing. The method processes elements in parallel and therefore runs efficiently on GPU. Due to the transition between layers in volume data, meshes have numerous vertices with valence three. We use simplification patterns for eliminating quads containing these vertices wherever possible which reduces the number of elements and increases quality. We briefly describe a CUDA implementation of our method, which allows processing huge amounts of data on GPU at almost interactive time rates. Finally, we present runtime and quality results of our method on medical and synthetic data sets.

[1]  Frans Vos,et al.  Improving Triangle Mesh Quality with SurfaceNets , 2000, MICCAI.

[2]  Daniele D'Agostino,et al.  A parallel isosurface extraction component for visualization pipelines executing on GPU clusters , 2015, J. Comput. Appl. Math..

[3]  J. Remacle,et al.  Blossom‐Quad: A non‐uniform quadrilateral mesh generator using a minimum‐cost perfect‐matching algorithm , 2012 .

[4]  Gregory M. Nielson,et al.  Dual marching cubes , 2004, IEEE Visualization 2004.

[5]  E Chernyaev,et al.  Marching cubes 33 : construction of topologically correct isosurfaces , 1995 .

[6]  Michael M. Kazhdan,et al.  Unconstrained isosurface extraction on arbitrary octrees , 2007, Symposium on Geometry Processing.

[7]  Sarah Gibson Constrained Elastic Surface Nets: Generating Smooth Surfaces from Binary Segmented Data , 1998 .

[8]  Mark T. Jones,et al.  A Parallel Algorithm for Mesh Smoothing , 1999, SIAM J. Sci. Comput..

[9]  Tao Ju,et al.  Dual contouring of hermite data , 2002, ACM Trans. Graph..

[10]  Roberto Scopigno,et al.  A modified look-up table for implicit disambiguation of Marching Cubes , 1994, The Visual Computer.

[11]  Valerio Pascucci,et al.  Topology Verification for Isosurface Extraction , 2012, IEEE Transactions on Visualization and Computer Graphics.

[12]  Tao Ju,et al.  Manifold Dual Contouring , 2007, IEEE Transactions on Visualization and Computer Graphics.

[13]  Ramsharan Rangarajan,et al.  Provably Robust Directional Vertex Relaxation for Geometric Mesh Optimization , 2017, SIAM J. Sci. Comput..

[14]  Heidrun Schumann,et al.  Generating Smooth High-Quality Isosurfaces for Interactive Modeling and Visualization of Complex Terrains , 2012, VMV.

[15]  Thomas Lewiner,et al.  Efficient Implementation of Marching Cubes' Cases with Topological Guarantees , 2003, J. Graphics, GPU, & Game Tools.

[16]  Sebastien Guillon,et al.  Parallel extraction and simplification of large isosurfaces using an extended tandem algorithm , 2010, Comput. Aided Des..

[17]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[18]  Bernd Hamann,et al.  The asymptotic decider: resolving the ambiguity in marching cubes , 1991, Proceeding Visualization '91.

[19]  Roberto Grosso,et al.  Construction of Topologically Correct and Manifold Isosurfaces , 2016, Comput. Graph. Forum.

[20]  Alexander A. Pasko,et al.  Geometric modeling in the analysis of trivariate functions , 1988, Comput. Graph..

[21]  Paolo Cignoni,et al.  Reconstruction of topologically correct and adaptive trilinear isosurfaces , 2000, Comput. Graph..

[22]  S. Canann,et al.  Topological improvement procedures for quadrilateral finite element meshes , 1998, Engineering with Computers.

[23]  Scott Schaefer,et al.  Dual marching cubes: primal contouring of dual grids , 2004, 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings..

[24]  David Cohen-Steiner,et al.  Extraction and simplification of iso-surfaces in tandem , 2005, SGP '05.

[25]  Junjie Chen,et al.  GPU-based polygonization and optimization for implicit surfaces , 2014, The Visual Computer.

[26]  Roberto Grosso,et al.  Parallel Reconstruction of Quad Only Meshes from Volume Data , 2020, VISIGRAPP.

[27]  S.F.F. Gibson,et al.  Using distance maps for accurate surface representation in sampled volumes , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[28]  Roberto Grosso An asymptotic decider for robust and topologically correct triangulation of isosurfaces: topologically correct isosurfaces , 2017, CGI.

[29]  Cláudio T. Silva,et al.  Practical considerations on Marching Cubes 33 topological correctness , 2013, Comput. Graph..

[30]  Ken Brodlie,et al.  Improving the Robustness and Accuracy of the Marching Cubes Algorithm for Isosurfacing , 2003, IEEE Trans. Vis. Comput. Graph..

[31]  Sergey V. Matveyev Marching cubes: surface complexity measure , 1999, Electronic Imaging.

[32]  Martin J. Dürst,et al.  Re , 1988 .

[33]  B. Natarajan On generating topologically consistent isosurfaces from uniform samples , 1994, The Visual Computer.

[34]  M. Audette,et al.  Watertight and 2-manifold Surface Meshes Using Dual Contouring with Tetrahedral Decomposition of Grid Cubes , 2016 .

[35]  Gregory M. Nielson,et al.  On Marching Cubes , 2003, IEEE Trans. Vis. Comput. Graph..

[36]  Christine Ulrich,et al.  Parallel iso-surface extraction and simplification , 2014 .

[37]  Daniele Panozzo,et al.  Practical quad mesh simplification , 2010, Comput. Graph. Forum.