EARLY SKELETAL FOSSILS

The Precambrian-Cambrian transition saw the burgeoning of diverse skeletal organisms ("small shelly fossils"), represented in the fossil record by spicules, tubes, tests, conchs, shells, and a variety of sclerites and ossicles. Whereas calcareous biomineralization as such may have been facilitated by changes in ocean chemistry at this time, the utilization of biominerals in mineralized skeletons is a different process. The massive appearance of skeletons is most likely an epiphenomenon of the general radiation of body plans and tissues. The "choice" of biominerals (mainly calcium carbonates, calcium phosphates, and silica) may reflect the environmental conditions under which the particular skeleton first evolved.

[1]  T. Lowenstein,et al.  Seawater chemistry and the advent of biocalcification , 2004 .

[2]  Maoyan Zhu,et al.  Lower Cambrian Small Shelly Fossils of northern Sichuan and southern Shaanxi (China), and their biostratigraphic importance , 2004 .

[3]  R. Riding,et al.  Calcified cyanophytes and the precambrian-cambrian transition , 1982, Naturwissenschaften.

[4]  D. Collins,et al.  Sponges of the Middle Cambrian Burgess Shale and Stephen Formations, British Columbia , 2004 .

[5]  R. Wrona Cambrian microfossils from glacial erratics of King George Island, Antarctica , 2004 .

[6]  A. Ivantsov,et al.  Articulated palaeoscolecid sclerite arrays from the Lower Cambrian of eastern Siberia , 2004 .

[7]  S. Goffredi,et al.  A Hot-Vent Gastropod with Iron Sulfide Dermal Sclerites , 2003, Science.

[8]  K. Mens Early Cambrian tubular fossils of the genus Onuphionella from Estonia , 2003, Proceedings of the Estonian Academy of Sciences. Geology.

[9]  R. Wrona Early Cambrian molluscs from glacial erratics of King George Island, West Antarctica , 2003 .

[10]  J. Grotzinger,et al.  Proterozoic Modular Biomineralized Metazoan from the Nama Group, Namibia , 2002, Science.

[11]  A. Reimer,et al.  Photosynthesis-Induced Biofilm Calcification and Calcium Concentrations in Phanerozoic Oceans , 2001, Science.

[12]  S. Bengtson,et al.  The integument of Cambrian chancelloriids , 2001 .

[13]  A. Knoll,et al.  Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia , 2000, Paleobiology.

[14]  R. D. Thomas,et al.  Evolutionary exploitation of design options by the first animals with hard skeletons. , 2000, Science.

[15]  Robert Riding,et al.  Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms , 2000 .

[16]  G. Shields,et al.  Ediacarian sponge spicule clusters from southwestern Mongolia and the origins of the Cambrian fauna , 1997 .

[17]  E. Landing,et al.  Oldest shelly fossils from the Taconic Allochthon and late Early Cambrian sea-levels in eastern Laurentia , 1996, Journal of Paleontology.

[18]  J. Gehling,et al.  Long expected sponges from the Neoproterozoic Ediacara fauna of South Australia , 1996, Journal of Paleontology.

[19]  S. Morris,et al.  Articulated Halkieriids from the Lower Cambrian of North Greenland and their Role in Early Protostome Evolution , 1995 .

[20]  S. Kempe,et al.  The role of alkalinity in the evolution of ocean chemistry, organization of living systems, and biocalcification processes , 1994 .

[21]  B. Cooper,et al.  Shelly fossils from the Early Cambrian (Toyonian) Wirrealpa, Aroona Creek, and Ramsay Limestones of South Australia , 1993, Journal of Paleontology.

[22]  R. D. Thomas,et al.  THE SKELETON SPACE: A FINITE SET OF ORGANIC DESIGNS , 1993, Evolution; international journal of organic evolution.

[23]  L. Ramsköld Homologies in Cambrian Onychophora , 1992 .

[24]  S. Bengtson The cap‐shaped Cambrian fossil Maikhanella and the relationship between coeloscleritophorans and molluscs , 1992 .

[25]  L. Ramsköld,et al.  New early Cambrian animal and onychophoran affinities of enigmatic metazoans , 1991, Nature.

[26]  S. Morris,et al.  Articulated halkieriids from the Lower Cambrian of north Greenland , 1990, Nature.

[27]  A. J. Rowell,et al.  Small shelly fossils from Antarctica: an Early Cambrian faunal connection with Australia , 1990, Journal of Paleontology.

[28]  S. Damborenea Middle Jurassic inoceramids from Argentina , 1988, Journal of Paleontology.

[29]  Grant Sw Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. , 1990 .

[30]  S. Grant Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. , 1990, American journal of science.

[31]  G. Narbonne,et al.  The Placentian Series: appearance of the oldest skeletalized faunas in southeastern Newfoundland , 1989, Journal of Paleontology.

[32]  M. Brasier,et al.  Earliest skeletal fossils from Precambrian–Cambrian boundary strata, Elburz Mountains, Iran , 1989, Geological Magazine.

[33]  S. Gould Wonderful Life: The Burgess Shale and the Nature of History , 1989 .

[34]  S. Bengtson,et al.  Palaeontology and biostratigraphy of the Early Cambrian Meishucunian Stage in Yunnan Province, South China , 1989 .

[35]  Stephan Kempe,et al.  The Soda Ocean Concept and Its Bearing on Biotic Evolution , 1989 .

[36]  E. Landing Lower Cambrian of eastern Massachusetts; stratigraphy and small shelly fossils , 1988 .

[37]  M. Brasier,et al.  Microfossils and Precambrian–Cambrian boundary stratigraphy at Maldeota, Lesser Himalaya , 1987, Geological Magazine.

[38]  J. Mount,et al.  A pre-trilobite shelly fauna from the White–Inyo region of eastern California and western Nevada , 1987, Journal of Paleontology.

[39]  J. Laurie Phosphatic fauna of the Early Cambrian Todd River Dolomite, Amadeus Basin, central Australia , 1986 .

[40]  V. Ittekkot,et al.  Cellular response to Ca 2+ stress and its geological implications , 1985 .

[41]  E. Landing Skeleton of lapworthellids and the suprageneric classification of tommotiids (Early and Middle Cambrian phosphatic problematica) , 1984 .

[42]  S. Morris,et al.  A comparative study of Lower Cambrian Halkieria and Middle Cambrian Wiwaxia , 1984 .

[43]  M. Brasier Microfossils and small shelly fossils from the Lower Cambrian Hyolithes Limestone at Nuneaton, English Midlands , 1984, Geological Magazine.

[44]  S. Bengtson,et al.  The oldest sequence of skeletal fossils in the Lower Cambrian of southeastern Newfoundland , 1983 .

[45]  R. Riding Cyanophyte calcification and changes in ocean chemistry , 1982, Nature.

[46]  S. Morris,et al.  Shelly microfossils near the Precambrian–Cambrian boundary, Mackenzie Mountains, northwestern Canada , 1980, Nature.

[47]  Von H. Mostler Zur Mikrofauna des Unterkambriums in der Haziraformation — Hazara, Pakistan , 1980 .

[48]  E. Degens Why do organisms calcify , 1979 .

[49]  J. Rigby Porifera of the Middle Cambrian Wheeler Shale, from the Wheeler Amphitheater, House Range, in western Utah , 1978 .

[50]  S. Bengtson Aspects of problematic fossils in the early palaeozoic , 1977 .

[51]  S. Stanley Fossil data and the Precambrian-Cambrian evolutionary transition , 1976 .

[52]  S. Matthews,et al.  Small shelly fossils of late Precambrian and early Cambrian age: a review of recent work , 1975, Journal of the Geological Society.

[53]  S. Gould,et al.  Punctuated equilibria: an alternative to phyletic gradualism , 1972 .

[54]  S. Bengtson THE LOWER CAMBRIAN FOSSIL TOMMOTIA , 1970 .

[55]  George Gaylord Simpson,et al.  Major Features Of Evolution , 1954 .

[56]  P. Cloud SOME PROBLEMS AND PATTERNS OF EVOLUTION EXEMPLIFIED BY FOSSIL INVERTEBRATES , 1948, Evolution; international journal of organic evolution.

[57]  E. S. Cobbold III.—Lower Cambrian faunas from Hérault, France , 1935 .

[58]  E. S. Cobbold The Cambrian Horizons of Comley (Shropshire), and their Brachiopoda, Pteropoda, Gasteropoda, etc. , 1920, Quarterly Journal of the Geological Society of London.

[59]  E. Billings On some fossils from the primordial rocks of Newfoundland , 1872 .