Testing for linearity

The problem of testing for linearity and the number of regimes in the context of self-exciting threshold autoregressive (SETAR) models is reviewed. We describe least-squares methods of estimation and inference. The primary complication is that the testing problem is non-standard, due to the presence of parameters which are only defined under the alternative, so the asymptotic distribution of the test statistics is non-standard. Simulation methods to calculate asymptotic and bootstrap distributions are presented. As the sampling distributions are quite sensitive to conditional heteroskedasticity in the error, careful modeling of the conditional variance is necessary for accurate inference on the conditional mean. We illustrate these methods with two applications--annual sunspot means and monthly U.S. industrial production. We find that annual sunspots and monthly industrial production are SETAR(2) processes. Copyright 1999 by Blackwell Publishers Ltd

[1]  Timo Teräsvirta,et al.  Testing linearity against smooth transition autoregressive models , 1988 .

[2]  John W. Galbraith Credit Rationing and Threshold Effects in the Relation between Money and Output , 1996 .

[3]  Gary Koop,et al.  Bayes factors and nonlinearity: Evidence from economic time series , 1999 .

[4]  M. Chavance [Jackknife and bootstrap]. , 1992, Revue d'epidemiologie et de sante publique.

[5]  Simon M. Potter A Nonlinear Approach to U.S. GNP , 1993 .

[6]  Maxwell B. Stinchcombe,et al.  CONSISTENT SPECIFICATION TESTING WITH NUISANCE PARAMETERS PRESENT ONLY UNDER THE ALTERNATIVE , 1998, Econometric Theory.

[7]  K. Chan,et al.  Percentage Points of Likelihood Ratio Tests for Threshold Autoregression , 1991 .

[8]  Bruce E. Hansen,et al.  Threshold effects in non-dynamic panels: Estimation, testing, and inference , 1999 .

[9]  D. Andrews,et al.  Optimal Tests When a Nuisance Parameter Is Present Only Under the Alternative , 1992 .

[10]  Philip Rothman,et al.  FURTHER EVIDENCE ON THE ASYMMETRIC BEHAVIOR OF UNEMPLOYMENT RATES OVER THE BUSINESS CYCLE , 1991 .

[11]  T. Teräsvirta,et al.  Characterizing Nonlinearities in Business Cycles Using Smooth Transition Autoregressive Models , 1992 .

[12]  William A. Brock,et al.  8 Nonlinear time series and macroeconometrics , 1993 .

[13]  D. Andrews Tests for Parameter Instability and Structural Change with Unknown Change Point , 1993 .

[14]  Kung-Sik Chan,et al.  On Likelihood Ratio Tests for Threshold Autoregression , 1990 .

[15]  Hung Man Tong,et al.  Threshold models in non-linear time series analysis. Lecture notes in statistics, No.21 , 1983 .

[16]  H. Tong,et al.  Data transformation and self-exciting threshold autoregression , 1981 .

[17]  E. Mammen The Bootstrap and Edgeworth Expansion , 1997 .

[18]  P. Perron,et al.  Estimating and testing linear models with multiple structural changes , 1995 .

[19]  Byeongseon Seo,et al.  TESTS FOR STRUCTURAL CHANGE IN COINTEGRATED SYSTEMS , 1998, Econometric Theory.

[20]  Timo Teräsvirta,et al.  Aspects of modelling nonlinear time series , 1986 .

[21]  S. Burgess Nonlinear Dynamics in a Structural Model of Employment , 1992 .

[22]  Bruce E. Hansen,et al.  Threshold Autoregressions with a Near Unit Root , 1998 .

[23]  Paul Waltman,et al.  A Threshold Model , 1974 .

[24]  Debashis Kushary,et al.  Bootstrap Methods and Their Application , 2000, Technometrics.

[25]  H. Tong Non-linear time series. A dynamical system approach , 1990 .

[26]  H. White A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity , 1980 .

[27]  K. Chan,et al.  Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model , 1993 .

[28]  C. Granger,et al.  Modelling Nonlinear Economic Relationships , 1995 .

[29]  Ruey S. Tsay,et al.  Testing and Modeling Threshold Autoregressive Processes , 1989 .

[30]  Ruey S. Tsay,et al.  Nonlinear Time-Series Analysis of Stock Volatilities , 1992 .

[31]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[32]  Bruce E. Hansen,et al.  Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis , 1996 .

[33]  R. Davies Hypothesis testing when a nuisance parameter is present only under the alternative , 1977 .

[34]  K. Chan,et al.  Testing for threshold autoregression , 1990 .

[35]  Bruce E. Hansen,et al.  Testing for structural change in conditional models , 2000 .

[36]  B. Hansen,et al.  Inference in TAR Models , 1997 .

[37]  J. Bai,et al.  Estimating Multiple Breaks One at a Time , 1997, Econometric Theory.

[38]  Francis X. Diebold,et al.  Testing structural stability with endogenous breakpoint A size comparison of analytic and bootstrap procedures , 1996 .

[39]  Howell Tong,et al.  Threshold autoregression, limit cycles and cyclical data- with discussion , 1980 .

[40]  Donald W. K. Andrews,et al.  Empirical Process Methods in Econometrics , 1993 .

[41]  G. C. Tiao,et al.  Journal of the American Statistical Association Forecasting the U.s. Unemployment Rate Forecasting the U.s. Unemployment Rate , 2022 .

[42]  Biing-Shen Kuo Test for partial parameter instability in regressions with I(1) processes , 1998 .

[43]  H. Tong,et al.  ON ESTIMATING THRESHOLDS IN AUTOREGRESSIVE MODELS , 1986 .