Adaptive Model-Based Polarimetric Decomposition Using PolInSAR Coherence

The overestimation of volume scattering power and the scattering mechanism ambiguity are still present in model-based decompositions even with the implementation of the deorientation processing. These effects are demonstrated and investigated. One possible reason is because of the limited dynamic range of the models themselves that are not fully satisfied for the mixed scene cases. An empirical volume scattering model is proposed, using the repeat-pass polarimetric synthetic aperture radar interferometry (PolInSAR) coherence, to extend the model dynamic range to be more adaptive. PolInSAR coherence is sensitive to different types of forests and terrains. The proposed model inherits these characteristics. In addition, it considers the cross-polarization power induced by oriented man-made structures. Thereby, a model-based polarimetric decomposition scheme is developed. The efficiency of the proposed method is demonstrated using E-SAR airborne and ALOS/PALSAR spaceborne repeat-pass PolInSAR datasets. Comparative experiments are carried out and show that the proposed decomposition overcomes the scattering mechanism ambiguity between forests and oriented built-up areas, since it successfully identifies the oriented buildings as double- or odd-bounce man-made structures while keeping the volume scattering dominant for the forests. Besides, the stable decomposition performance over the oriented built-up patches with quite different orientation angles also validates the improvement of the proposed decomposition. In addition, the demonstrations with short and long temporal baselines validate the generality of the proposed method.

[1]  Masanobu Shimada,et al.  Calibration of PRISM and AVNIR-2 Onboard ALOS “Daichi” , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Motoyuki Sato,et al.  Analysis of Polarization Orientation Angle Shifts by Artificial Structures , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Hiroshi Kimura,et al.  Radar Polarization Orientation Shifts in Built-Up Areas , 2008, IEEE Geoscience and Remote Sensing Letters.

[4]  Jakob J. van Zyl,et al.  Adaptive Model-Based Decomposition of Polarimetric SAR Covariance Matrices , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Anthony Freeman,et al.  Fitting a Two-Component Scattering Model to Polarimetric SAR Data From Forests , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Thomas L. Ainsworth,et al.  The Effect of Orientation Angle Compensation on Coherency Matrix and Polarimetric Target Decompositions , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[7]  J. Huynen Phenomenological theory of radar targets , 1970 .

[8]  Yoshio Yamaguchi,et al.  General Four-Component Scattering Power Decomposition With Unitary Transformation of Coherency Matrix , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Thomas L. Ainsworth,et al.  Polarimetric SAR data compensation for terrain azimuth slope variation , 2000, IEEE Trans. Geosci. Remote. Sens..

[10]  Laurent Ferro-Famil,et al.  Estimation of Forest Structure, Ground, and Canopy Layer Characteristics From Multibaseline Polarimetric Interferometric SAR Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Manabu Watanabe,et al.  ALOS PALSAR: A Pathfinder Mission for Global-Scale Monitoring of the Environment , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Laurent Ferro-Famil,et al.  Multibaseline Polarimetric SAR Interferometry Coherence Optimization , 2008, IEEE Geoscience and Remote Sensing Letters.

[13]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[14]  Masanobu Shimada,et al.  Deorientation Effect Investigation for Model-Based Decomposition Over Oriented Built-Up Areas , 2013, IEEE Geoscience and Remote Sensing Letters.

[15]  Hiroyoshi Yamada,et al.  Four-Component Scattering Power Decomposition With Rotation of Coherency Matrix , 2011, IEEE Trans. Geosci. Remote. Sens..

[16]  Laurent Ferro-Famil,et al.  A general model-based polarimetric decomposition scheme for vegetated areas. , 2009 .

[17]  Shane Cloude Dual-Baseline Coherence Tomography , 2007, IEEE Geoscience and Remote Sensing Letters.

[18]  Juan M. Lopez-Sanchez,et al.  Model Limitations and Parameter-Estimation Methods for Agricultural Applications of Polarimetric SAR Interferometry , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Laurent Ferro-Famil,et al.  Analysis of Natural Scenes using Polarimetric and Interferometric SAR Data Statistics in Particular Configurations , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[20]  Walid Tabbara,et al.  An interferometric coherence optimization method in radar polarimetry for high-resolution imagery , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Hiroyoshi Yamada,et al.  A four-component decomposition of POLSAR images based on the coherency matrix , 2006, IEEE Geoscience and Remote Sensing Letters.

[22]  Laurent Ferro-Famil,et al.  Forest Mapping and Classification Using L-Band POLINSAR Data. , 2005 .

[23]  Thuy Le Toan,et al.  Estimation of the Backscatter Vertical Profile of a Pine Forest Using Single Baseline P-Band (Pol-)InSAR Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[25]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .

[26]  Laurent Ferro-Famil,et al.  Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/Alpha-Wishart classifier , 2001, IEEE Trans. Geosci. Remote. Sens..

[27]  Irena Hajnsek,et al.  Forest Classification Based on L-Band Polarimetric and Interferometric SAR Data , 2005 .

[28]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[29]  Fabio Rocca,et al.  Permanent scatterers in SAR interferometry , 1999, Remote Sensing.

[30]  Konstantinos Papathanassiou,et al.  Single-baseline polarimetric SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[31]  Thomas L. Ainsworth,et al.  On the estimation of radar polarization orientation shifts induced by terrain slopes , 2002, IEEE Trans. Geosci. Remote. Sens..

[32]  L. Ferro-Famil,et al.  Unsupervised classification and analysis of natural scenes from polarimetric interferometric SAR data , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[33]  Hiroyoshi Yamada,et al.  Scattering component decomposition for POL-InSAR dataset and its applications , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[34]  Motoyuki Sato,et al.  PolInSAR Complex Coherence Estimation Based on Covariance Matrix Similarity Test , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[35]  Yoshio Yamaguchi,et al.  Disaster Monitoring by Fully Polarimetric SAR Data Acquired With ALOS-PALSAR , 2012, Proceedings of the IEEE.

[36]  Motoyuki Sato,et al.  Polarimetric SAR Analysis of Tsunami Damage Following the March 11, 2011 East Japan Earthquake , 2012, Proceedings of the IEEE.

[37]  Jian Yang,et al.  Three-Component Model-Based Decomposition for Polarimetric SAR Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[38]  Motoyuki Sato,et al.  General Polarimetric Model-Based Decomposition for Coherency Matrix , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[39]  Ya-Qiu Jin,et al.  Deorientation theory of polarimetric scattering targets and application to terrain surface classification , 2005, IEEE Trans. Geosci. Remote. Sens..

[40]  Thuy Le Toan,et al.  Forest Modeling For Height Inversion Using Single-Baseline InSAR/Pol-InSAR Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[41]  Jong-Sen Lee,et al.  Compensation of Terrain Azimuthal Slope Effects in Geophysical Parameter Studies Using Polarimetric SAR Data , 1999 .

[42]  S. Cloude Polarization coherence tomography , 2006 .

[43]  Laurent Ferro-Famil,et al.  Unsupervised terrain classification preserving polarimetric scattering characteristics , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[44]  Juan M. Lopez-Sanchez,et al.  Applying the Freeman–Durden Decomposition Concept to Polarimetric SAR Interferometry , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[45]  Konstantinos Papathanassiou,et al.  Speckle filtering and coherence estimation of polarimetric SAR interferometry data for forest applications , 2003, IEEE Trans. Geosci. Remote. Sens..

[46]  Konstantinos P. Papathanassiou,et al.  Polarimetric SAR interferometry , 1998, IEEE Trans. Geosci. Remote. Sens..

[47]  Thomas L. Ainsworth,et al.  Unsupervised classification using polarimetric decomposition and the complex Wishart classifier , 1999, IEEE Trans. Geosci. Remote. Sens..

[48]  Jakob J. van Zyl,et al.  A General Characterization for Polarimetric Scattering From Vegetation Canopies , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[49]  Y. Yamaguchi,et al.  CS-1-4 Four-Component Scattering Model for Polarimetric SAR Image Decomposition based on Covariance Matrix(CS-1. 電磁波計測・イメージングと波動情報処理技術, エレクトロニクス1) , 2005 .

[50]  Masanobu Shimada,et al.  PALSAR Radiometric and Geometric Calibration , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[51]  Motoyuki Sato,et al.  Tsunami Damage Investigation of Built-Up Areas Using Multitemporal Spaceborne Full Polarimetric SAR Images , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[52]  I. Hajnsek,et al.  Applying polarimetric SAR interferometric data for forest classification , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[53]  Ridha Touzi,et al.  Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[54]  Jakob J. van Zyl,et al.  Model-Based Decomposition of Polarimetric SAR Covariance Matrices Constrained for Nonnegative Eigenvalues , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[55]  Jakob J. Vanzyl,et al.  Application of Cloude's target decomposition theorem to polarimetric imaging radar data , 1993 .

[56]  Thomas L. Ainsworth,et al.  Generalized polarimetric model-based decompositions using extended incoherent scattering models , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.