HIGHER DIMENSIONAL COSMOLOGICAL MODEL IN LYRA GEOMETRY: REVISITED

In this paper we have revisited the research work of Rahman and Bera22 on Kaluza–Klein cosmological model within the framework of Lyra Geometry. It has been shown that the empty universe model yields a power law relation without any assumption. The role of bulk viscosity on five-dimensional cosmological model is discussed. The physical behaviour of the models is examined in all cases.

[1]  F. Rahaman,et al.  HIGHER DIMENSIONAL COSMOLOGICAL MODEL IN LYRA GEOMETRY , 2001 .

[2]  A. Pradhan,et al.  BULK VISCOUS FRW COSMOLOGY IN LYRA GEOMETRY , 2001 .

[3]  S. Chakraborty,et al.  GENERALIZED SCALAR TENSOR THEORY IN FOUR AND HIGHER DIMENSION , 2000 .

[4]  Kalyani Desikan,et al.  A new class of cosmological models in Lyra geometry , 1997 .

[5]  D. Nanopoulos,et al.  A New cosmological constant model , 1995, hep-ph/9501293.

[6]  A. Banerjee,et al.  Evolution of Kaluza–Klein inhomogeneous model with a cosmological constant , 1995 .

[7]  A. Beesham Bianchi type I cosmological models with variableG and A , 1994 .

[8]  T. Singh,et al.  Lyra's Geometry and Cosmology: A Review , 1993 .

[9]  A. Banerjee,et al.  Kaluza-Klein type of inhomogeneous cosmological model , 1993 .

[10]  G. Singh,et al.  Bianchi type‐I cosmological models in Lyra’s geometry , 1991 .

[11]  Berman Cosmological models with a variable cosmological term. , 1991, Physical review. D, Particles and fields.

[12]  H. Soleng Cosmologies based on Lyra's geometry , 1987 .

[13]  D. Reddy,et al.  Birkhoff-type theorem in the scale-covariant theory of gravitation , 1987 .

[14]  A. Beesham Vacuum friedmann cosmology based on Lyra's manifold , 1986 .

[15]  D. Reddy,et al.  A plane symmetric cosmological model in Lyra manifold , 1986 .

[16]  Y. Lau The Large Number Hypothesis and Einstein's Theory of Gravitation , 1985 .

[17]  B. B. Waghmode,et al.  A static cosmological model in Einstein-Cartan theory , 1982 .

[18]  T. Karade,et al.  Thermodynamic equilibrium of a gravitating sphere in Lyra's geometry , 1978 .

[19]  T. Fukui,et al.  The cosmological term and a modified Brans-Dicke cosmology , 1977 .

[20]  V. Canuto,et al.  Scale-covariant theory of gravitation and astrophysical applications , 1977 .

[21]  K. Bhamra A Cosmological Model of Class One in Lyra's Manifold , 1974 .

[22]  K. Dunn,et al.  A Scalar-Tensor Theory of Gravitation in a Modified Riemannian Manifold , 1971 .

[23]  Steven Weinberg,et al.  Entropy generation and the survival of protogalaxies in an expanding universe , 1971 .

[24]  W. Halford COSMOLOGICAL THEORY BASED ON LYRA'S GEOMETRY. , 1970 .

[25]  G. Lyra Über eine Modifikation der Riemannschen Geometrie , 1951 .