暂无分享,去创建一个
[1] Leslie G. Valiant,et al. The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..
[2] Y. Ihara. On discrete subgroups of the two by two projective linear group over p-adic fields , 1966 .
[3] Michael Chertkov,et al. Loop Calculus in Statistical Physics and Information Science , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.
[4] L. Lovász. Matching Theory (North-Holland mathematics studies) , 1986 .
[5] A. Hasman,et al. Probabilistic reasoning in intelligent systems: Networks of plausible inference , 1991 .
[6] Michael Chertkov,et al. Loop series for discrete statistical models on graphs , 2006, ArXiv.
[7] Robert G. Gallager,et al. Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.
[8] M. Bayati,et al. Max-Product for Maximum Weight Matching: Convergence, Correctness, and LP Duality , 2008, IEEE Transactions on Information Theory.
[9] William T. Freeman,et al. Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.
[10] Michael I. Jordan,et al. Advances in Neural Information Processing Systems 30 , 1995 .
[11] Kenji Fukumizu,et al. Graph Zeta Function in the Bethe Free Energy and Loopy Belief Propagation , 2009, NIPS.
[12] J. van Leeuwen,et al. Theoretical Computer Science , 2003, Lecture Notes in Computer Science.
[13] Robert B. Ash,et al. Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.
[14] Judea Pearl,et al. Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.
[15] H. Bass. THE IHARA-SELBERG ZETA FUNCTION OF A TREE LATTICE , 1992 .
[16] Eric Vigoda,et al. A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.
[17] L. Goddard. Information Theory , 1962, Nature.
[18] H. Kuhn. The Hungarian method for the assignment problem , 1955 .
[19] Edward D. Kim,et al. Jahresbericht der deutschen Mathematiker-Vereinigung , 1902 .
[20] I. Gutman,et al. On the theory of the matching polynomial , 1981, J. Graph Theory.
[21] Michael Chertkov,et al. Belief Propagation and Beyond for Particle Tracking , 2008, ArXiv.
[22] Dimitri P. Bertsekas,et al. Auction algorithms for network flow problems: A tutorial introduction , 1992, Comput. Optim. Appl..
[23] Bert Huang,et al. Approximating the Permanent with Belief Propagation , 2009, ArXiv.
[24] O. Bagasra,et al. Proceedings of the National Academy of Sciences , 1914, Science.
[25] M Chertkov,et al. Inference in particle tracking experiments by passing messages between images , 2009, Proceedings of the National Academy of Sciences.