Unidirectional evolutionary transitions in fungal mating systems and the role of transposable elements.

In the fungal kingdom, the evolution of mating systems is highly dynamic, varying even among closely related species. Rearrangements in the mating-type (mat) locus, which contains the major regulators of sexual development, are expected to underlie the transitions between self-sterility (heterothallism) and self-fertility (homothallism). However, both the genetic mechanisms and the direction of evolutionary transitions in fungal mating systems are under debate. Here, we present new sequences of the mat locus of four homothallic and one heterothallic species of the model genus Neurospora (Ascomycota). By examining the patterns of synteny among these sequences and previously published data, we show that the locus is conserved among heterothallic species belonging to distinct phylogenetic clades, while different gene arrangements characterize the four homothallic species. These results allowed us to ascertain a heterothallic ancestor for the genus, confirming the prediction of the dead-end theory on unidirectional transitions toward selfing. We show that at least four shifts from heterothallism to homothallism have occurred in Neurospora, three of which involve the acquisition of sequences of both mating types into the same haploid genome. We present evidence for two genetic mechanisms allowing these shifts: translocation and unequal crossover. Finally, we identified two novel retrotransposons and suggest that these have played a major role in mating-system transitions, by facilitating multiple rearrangements of the mat locus.

[1]  E. Vollmeister,et al.  Interspecific Sex in Grass Smuts and the Genetic Diversity of Their Pheromone-Receptor System , 2011, PLoS genetics.

[2]  A. Idnurm Sex Determination in the First-Described Sexual Fungus , 2011, Eukaryotic Cell.

[3]  U. Kück,et al.  Molecular organization of the mating-type loci in the homothallic Ascomycete Eupenicillium crustaceum. , 2011, Fungal biology.

[4]  Benoit Nabholz,et al.  A comprehensive phylogeny of Neurospora reveals a link between reproductive mode and molecular evolution in fungi. , 2011, Molecular phylogenetics and evolution.

[5]  E. Selker Neurospora , 2011, Current Biology.

[6]  Adam Skinner Rate heterogeneity, ancestral character state reconstruction, and the evolution of limb morphology in Lerista (Scincidae, Squamata). , 2010, Systematic biology.

[7]  C. Grünig,et al.  Characterization of the mating type (MAT) locus in the Phialocephala fortinii s.l. -Acephala applanata species complex. , 2010, Fungal genetics and biology : FG & B.

[8]  N. Perna,et al.  progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement , 2010, PloS one.

[9]  Joseph Heitman,et al.  The Evolution of Sex: a Perspective from the Fungal Kingdom , 2010, Microbiology and Molecular Biology Reviews.

[10]  J. Heitman,et al.  The Mating Type Locus (MAT) and Sexual Reproduction of Cryptococcus heveanensis: Insights into the Evolution of Sex and Sex-Determining Chromosomal Regions in Fungi , 2010, PLoS genetics.

[11]  J. Stajich,et al.  De novo Assembly of a 40 Mb Eukaryotic Genome from Short Sequence Reads: Sordaria macrospora, a Model Organism for Fungal Morphogenesis , 2010, PLoS genetics.

[12]  T. C. White,et al.  Organization and Evolutionary Trajectory of the Mating Type (MAT) Locus in Dermatophyte and Dimorphic Fungal Pathogens , 2009, Eukaryotic Cell.

[13]  D. Weigel,et al.  Recent speciation of Capsella rubella from Capsella grandiflora, associated with loss of self-incompatibility and an extreme bottleneck , 2009, Proceedings of the National Academy of Sciences.

[14]  M. Borodovsky,et al.  Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. , 2008, Genome research.

[15]  I. Carbone,et al.  Characterization and population analysis of the mating-type genes in Aspergillus flavus and Aspergillus parasiticus. , 2008, Fungal genetics and biology : FG & B.

[16]  M. Wedin,et al.  The limitations of ancestral state reconstruction and the evolution of the ascus in the Lecanorales (lichenized Ascomycota). , 2008, Systematic biology.

[17]  Stefan Kurtz,et al.  LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons , 2008, BMC Bioinformatics.

[18]  Sofia M. C. Robb,et al.  MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. , 2007, Genome research.

[19]  F. Lutzoni,et al.  DNA Sequence Characterization and Molecular Evolution of MAT1 and MAT2 Mating-Type Loci of the Self-Compatible Ascomycete Mold Neosartorya fischeri , 2007, Eukaryotic Cell.

[20]  P. Mieczkowski,et al.  Recombination between retrotransposons as a source of chromosome rearrangements in the yeast Saccharomyces cerevisiae. , 2006, DNA repair.

[21]  D. Barker,et al.  Evolutionary history of vegetative reproduction in Porpidia s.L. (Lichen-forming ascomycota). , 2006, Systematic biology.

[22]  Christina A. Cuomo,et al.  Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae , 2005, Nature.

[23]  D. Bachtrog Sex chromosome evolution: molecular aspects of Y-chromosome degeneration in Drosophila. , 2005, Genome research.

[24]  M. Berbee,et al.  Lateral transfer of mating system in Stemphylium. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. Jurka,et al.  Repbase Update, a database of eukaryotic repetitive elements , 2005, Cytogenetic and Genome Research.

[26]  D. Hawksworth,et al.  A synopsis and re-circumscription of Neurospora (syn. Gelasinospora) based on ultrastructural and 28S rDNA sequence data. , 2004, Mycological research.

[27]  G. Butler,et al.  Evolution of the MAT locus and its Ho endonuclease in yeast species. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Mario Stanke,et al.  Gene prediction with a hidden Markov model and a new intron submodel , 2003, ECCB.

[29]  R. Allshire,et al.  Hairpin RNAs and Retrotransposon LTRs Effect RNAi and Chromatin-Based Gene Silencing , 2003, Science.

[30]  E. Mauceli,et al.  The genome sequence of the filamentous fungus Neurospora crassa , 2003, Nature.

[31]  J. Heitman,et al.  Mating-Type Locus of Cryptococcus neoformans: a Step in the Evolution of Sex Chromosomes , 2002, Eukaryotic Cell.

[32]  H. Matsuo,et al.  Pyret, a Ty3/Gypsy retrotransposon in Magnaporthe grisea contains an extra domain between the nucleocapsid and protease domains. , 2001, Nucleic acids research.

[33]  J. W. Taylor,et al.  Ascospore morphology is a poor predictor of the phylogenetic relationships of Neurospora and Gelasinospora. , 2001, Fungal genetics and biology : FG & B.

[34]  P. Morrell,et al.  Is self-fertilization an evolutionary dead end? Revisiting an old hypothesis with genetic theories and a macroevolutionary approach. , 2001, American journal of botany.

[35]  J. Vrebalov,et al.  Self-Incompatibility in the Genus Arabidopsis: Characterization of the S Locus in the Outcrossing A. lyrata and Its Autogamous Relative A. thaliana , 2001, Plant Cell.

[36]  J. Landry,et al.  Long Terminal Repeats Are Used as Alternative Promoters for the Endothelin B Receptor and Apolipoprotein C-I Genes in Humans* , 2001, The Journal of Biological Chemistry.

[37]  Kim Rutherford,et al.  Artemis: sequence visualization and annotation , 2000, Bioinform..

[38]  T. Arie,et al.  Molecular organization of mating type loci in heterothallic, homothallic, and asexual Gibberella/Fusarium species. , 2000, Fungal genetics and biology : FG & B.

[39]  Rowland H. Davis Neurospora: Contributions of a Model Organism , 2000 .

[40]  C. Lloréns,et al.  Ty3/Gypsy retrotransposons: description of new Arabidopsis thaliana elements and evolutionary perspectives derived from comparative genomic data. , 2000, Molecular biology and evolution.

[41]  N. L. Glass,et al.  Cell and nuclear recognition mechanisms mediated by mating type in filamentous ascomycetes. , 2000, Current opinion in microbiology.

[42]  S. Pöggeler Phylogenetic relationships between mating-type sequences from homothallic and heterothallic ascomycetes , 1999, Current Genetics.

[43]  T. Eickbush,et al.  Modular Evolution of the Integrase Domain in the Ty3/Gypsy Class of LTR Retrotransposons , 1999, Journal of Virology.

[44]  M. Berbee,et al.  Evolution of the fungal self-fertile reproductive life style from self-sterile ancestors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[45]  J. Stenlid,et al.  Molecular identification of wood-inhabiting fungi in an unmanaged Picea abies forest in Sweden , 1999 .

[46]  R. Metzenberg,et al.  The mating type locus of Neurospora crassa: identification of an adjacent gene and characterization of transcripts surrounding the idiomorphs , 1998, Molecular and General Genetics MGG.

[47]  I. Connerton,et al.  DAB1: a degenerate retrotransposon-like element from Neurospora crassa , 1998, Molecular and General Genetics MGG.

[48]  U. Kück,et al.  Mating-type genes from the homothallic fungus Sordaria macrospora are functionally expressed in a heterothallic ascomycete. , 1997, Genetics.

[49]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[50]  M. Roncero,et al.  skippy, a retrotransposon from the fungal plant pathogen Fusarium oxysporum , 1995, Molecular and General Genetics MGG.

[51]  F. Marches,et al.  Boty, a long-terminal-repeat retroelement in the phytopathogenic fungus Botrytis cinerea , 1995, Applied and environmental microbiology.

[52]  Myron L Smith,et al.  Molecular characterization of mating-type loci in selected homothallic species of Neurospora, Gelasinospora and Anixiella , 1994 .

[53]  N. L. Glass,et al.  Structure and function of a mating-type gene from the homothallic species Neurospora africana , 1994, Molecular and General Genetics MGG.

[54]  R. Metzenberg,et al.  Homothallic Sordariaceae from nature: The absence of strains containing only thea mating type sequence , 1990 .

[55]  C. Yanofsky,et al.  Neurospora crassa a mating-type region. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[56]  R. Metzenberg,et al.  Neurospora crassa A mating-type region. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[57]  C. Yanofsky,et al.  DNAs of the two mating-type alleles of Neurospora crassa are highly dissimilar. , 1988, Science.

[58]  M. Botchan,et al.  Association of crossover points with topoisomerase I cleavage sites: a model for nonhomologous recombination. , 1985, Science.

[59]  N. Raju Meiotic nuclear behavior and ascospore formation in five homothallic species of Neurospora , 1978 .

[60]  S. K. Jain,et al.  The Evolution of Inbreeding in Plants , 1976 .

[61]  J. Page,et al.  Nonconidiation in the new homothallic species, Neurospora terricola , 1963 .

[62]  D. Schübeler,et al.  Relics of repeat-induced point mutation direct heterochromatin formation in Neurospora crassa. , 2009, Genome research.

[63]  G. Butler The Evolution of MAT: The Ascomycetes , 2007 .

[64]  D. Aanen,et al.  Why Sex Is Good: On Fungi and Beyond , 2007 .

[65]  J. Heitman,et al.  Mechanisms of Homothallism in Fungi and Transitions between Heterothallism and Homothallism , 2007 .

[66]  J. Heitman,et al.  Sex in fungi: molecular determination and evolutionary implications. , 2007 .

[67]  S. Wessler Eukaryotic Transposable Elements : Teaching Old Genomes New Tricks , 2006 .

[68]  B. Turgeon,et al.  Mating-Type Structure, Evolution, and Function in Euascomycetes , 2006 .

[69]  L. Caporale The implicit genome , 2006 .

[70]  S Rozen,et al.  Primer3 on the WWW for general users and for biologist programmers. , 2000, Methods in molecular biology.

[71]  P. Oudemans,et al.  A long terminal repeat retrotransposon Cgret from the phytopathogenic fungus Colletotrichum gloeosporioides on cranberry , 2000, Current Genetics.

[72]  C. Staben,et al.  Mating type in filamentous fungi. , 1997, Annual review of genetics.

[73]  E. Selker Premeiotic instability of repeated sequences in Neurospora crassa. , 1990, Annual review of genetics.

[74]  D. D. Perkins Mating-type switching in filamentous ascomycetes. , 1987, Genetics.

[75]  M. Karlsson,et al.  The evolutionary trajectory of the mating-type (mat) genes in Neurospora relates to reproductive behavior of taxa , 2008, BMC Evolutionary Biology.