Retrieving Ideal Precision in Noisy Quantum Optical Metrology.

Quantum metrology employs quantum effects to attain a measurement precision surpassing the limit achievable in classical physics. However, it was previously found that the precision returns the shot-noise limit (SNL) from the ideal Zeno limit (ZL) due to the photon loss in quantum metrology based on Mech-Zehnder interferometry. Here, we find that not only can the SNL be beaten, but also the ZL can be asymptotically recovered in a long-encoding-time condition when the photon dissipation is exactly studied in its inherent non-Markovian manner. Our analysis reveals that it is due to the formation of a bound state of the photonic system and its dissipative noise. Highlighting the microscopic mechanism of the dissipative noise on the quantum optical metrology, our result supplies a guideline to realize the ultrasensitive measurement in practice by forming the bound state in the setting of reservoir engineering.

[1]  J. P. Home,et al.  Quantum harmonic oscillator state synthesis by reservoir engineering , 2014, Science.

[2]  W. Marsden I and J , 2012 .

[3]  Kae Nemoto,et al.  Effect of multimode entanglement on lossy optical quantum metrology , 2014 .

[4]  J. Cirac,et al.  Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.

[5]  R. Schnabel,et al.  First long-term application of squeezed states of light in a gravitational-wave observatory. , 2013, Physical review letters.

[6]  Aravind Chiruvelli,et al.  Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit. , 2009, Physical review letters.

[7]  Hong-Gang Luo,et al.  Frozen Gaussian quantum discord in photonic crystal cavity array system , 2013, 1307.5385.

[8]  Jun-Hong An,et al.  Non-Markovian entanglement dynamics of noisy continuous-variable quantum channels , 2007, 0707.2278.

[9]  B. Fain Instabilities in thermal baths , 1981 .

[10]  Jonathan A. Jones,et al.  Magnetic Field Sensing Beyond the Standard Quantum Limit Using 10-Spin NOON States , 2008, Science.

[11]  A. Gatti,et al.  Quantum Imaging , 2002 .

[12]  M. Rossi,et al.  Restoring Heisenberg scaling in noisy quantum metrology by monitoring the environment , 2018, Quantum Information and Measurement (QIM) V: Quantum Technologies.

[13]  Franco Nori,et al.  Quantum spin squeezing , 2010, 1011.2978.

[14]  Mankei Tsang,et al.  Quantum theory of superresolution for two incoherent optical point sources , 2015, 1511.00552.

[15]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[16]  A. Datta,et al.  Quantum-limited metrology with product states , 2007, 0710.0285.

[17]  Augusto Smerzi,et al.  Mach-Zehnder interferometry at the Heisenberg limit with coherent and squeezed-vacuum light. , 2007, Physical review letters.

[18]  D. Schneble,et al.  Spontaneous emission of matter waves from a tunable open quantum system , 2017, Nature.

[19]  Yaron Silberberg,et al.  Supersensitive polarization microscopy using NOON states of light. , 2014, Physical review letters.

[20]  Brian J. Smith,et al.  Optimal quantum phase estimation. , 2008, Physical review letters.

[21]  C. K. Law,et al.  Non-Markovian master equation for a damped oscillator with time-varying parameters , 2010, 1003.5975.

[22]  Jia Kong,et al.  Quantum metrology with parametric amplifier-based photon correlation interferometers , 2014, Nature Communications.

[23]  F. Reinhard,et al.  Quantum sensing , 2016, 1611.02427.

[24]  Guo‐Feng Zhang,et al.  Universal Dissipationless Dynamics in Gaussian Continuous-Variable Open Systems. , 2018, Physical review letters.

[25]  A. Leggett,et al.  Dynamics of the dissipative two-state system , 1987 .

[26]  Katarzyna Macieszczak The Zeno limit in frequency estimation with non-Markovian environments , 2014 .

[27]  Fabio Sciarrino,et al.  All-optical non-Markovian stroboscopic quantum simulator , 2014, 1411.6959.

[28]  Franco Nori,et al.  General non-Markovian dynamics of open quantum systems. , 2012, Physical review letters.

[29]  Jonathan P. Dowling,et al.  Adaptive phase estimation with two-mode squeezed vacuum and parity measurement , 2016, 1609.04689.

[30]  D. Porras,et al.  Mesoscopic spin-boson models of trapped ions , 2007, 0710.5145.

[31]  Holland,et al.  Interferometric detection of optical phase shifts at the Heisenberg limit. , 1993, Physical review letters.

[32]  Ian A. Walmsley,et al.  Quantum states made to measure , 2009, 0912.4092.

[33]  Saikat Guha,et al.  Microwave quantum illumination. , 2015, Physical review letters.

[34]  Onur Hosten,et al.  Measurement noise 100 times lower than the quantum-projection limit using entangled atoms , 2016, Nature.

[35]  W. Ertmer,et al.  Improvement of an Atomic Clock using Squeezed Vacuum. , 2016, Physical review letters.

[36]  J. Dalibard,et al.  Quantum-enhanced sensing using non-classical spin states of a highly magnetic atom , 2018, Nature Communications.

[37]  Elsi-Mari Laine,et al.  Colloquium: Non-Markovian dynamics in open quantum systems , 2015, 1505.01385.

[38]  J. Kołodyński,et al.  Quantum limits in optical interferometry , 2014, 1405.7703.

[39]  Abrams,et al.  Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit , 1999, Physical review letters.

[40]  Jieping Ye,et al.  A quantum network of clocks , 2013, Nature Physics.

[41]  Alex W Chin,et al.  Quantum metrology in non-Markovian environments. , 2011, Physical review letters.

[42]  A. Houck,et al.  Quantum electrodynamics near a photonic bandgap , 2016, Nature Physics.

[43]  W. Bowen,et al.  Subdiffraction-limited quantum imaging within a living cell , 2013, 1305.1353.

[44]  Y. Weinstein,et al.  Use of maximally entangled N-photon states for practical quantum interferometry , 2008 .

[45]  Animesh Datta,et al.  Quantum metrology: dynamics versus entanglement. , 2008, Physical review letters.

[46]  C. Monroe,et al.  Decoherence of quantum superpositions through coupling to engineered reservoirs , 2000, Nature.

[47]  Holger F. Hofmann,et al.  Effects of photon losses on phase estimation near the Heisenberg limit using coherent light and squeezed vacuum , 2009, 0910.3727.

[48]  William J Munro,et al.  Quantum metrology with entangled coherent states. , 2011, Physical review letters.

[49]  G. Guo,et al.  Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems , 2011, 1109.2677.

[50]  A Retzker,et al.  Increasing sensing resolution with error correction. , 2013, Physical review letters.

[51]  Fabio Sciarrino,et al.  Experimental observation of weak non-Markovianity , 2015, Scientific Reports.

[52]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[53]  Sean D. Huver,et al.  Entangled Fock states for Robust Quantum Optical Metrology, Imaging, and Sensing , 2008, 0805.0296.

[54]  Chong Chen,et al.  Quantum metrology in local dissipative environments , 2017, 1702.07145.

[55]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[56]  Li Li,et al.  Concepts of quantum non-Markovianity: A hierarchy , 2017, Physics Reports.

[57]  S. Huelga,et al.  Quantum non-Markovianity: characterization, quantification and detection , 2014, Reports on progress in physics. Physical Society.

[58]  B. Fain Irreversibilities in quantum mechanics , 2000 .

[59]  Stefano Pirandola,et al.  Ultimate Precision Bound of Quantum and Subwavelength Imaging. , 2016, Physical review letters.

[60]  R Hanson,et al.  Optimized quantum sensing with a single electron spin using real-time adaptive measurements. , 2015, Nature nanotechnology.

[61]  Warwick P. Bowen,et al.  Quantum metrology and its application in biology , 2014, 1409.0950.

[62]  K. Banaszek,et al.  Quantum phase estimation with lossy interferometers , 2009, 0904.0456.

[63]  Roberta Ramponi,et al.  Measuring protein concentration with entangled photons , 2011, 1109.3128.

[64]  Sixia Yu,et al.  Robust quantum metrological schemes based on protection of quantum Fisher information , 2014, Nature Communications.

[65]  Keiji Sasaki,et al.  Beating the Standard Quantum Limit with Four-Entangled Photons , 2007, Science.

[66]  J. Eisert,et al.  Observation of non-Markovian micromechanical Brownian motion , 2013, Nature Communications.

[67]  Jun-Hong An,et al.  Mechanism of entanglement preservation , 2009, 0910.5622.

[68]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[69]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[70]  D. Hume,et al.  Scalable spin squeezing for quantum-enhanced magnetometry with Bose-Einstein condensates. , 2014, Physical review letters.

[71]  Hong-Gang Luo,et al.  Canonical versus noncanonical equilibration dynamics of open quantum systems. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[72]  L. Pezzè,et al.  Quantum metrology with nonclassical states of atomic ensembles , 2016, Reviews of Modern Physics.

[73]  Joseph Fitzsimons,et al.  Magnetic field sensing beyond the standard quantum limit under the effect of decoherence , 2011, 1101.2561.

[74]  Sumanth Kaushik,et al.  Loss-induced limits to phase measurement precision with maximally entangled states , 2007 .

[75]  N. J. Engelsen,et al.  Bell Correlations in Spin-Squeezed States of 500 000 Atoms. , 2017, Physical review letters.

[76]  G. R. Jin,et al.  Quantum Fisher information of entangled coherent states in the presence of photon loss , 2013, 1307.7353.

[77]  A Strathearn,et al.  Efficient non-Markovian quantum dynamics using time-evolving matrix product operators , 2017, Nature Communications.