Output dead-beat controllers and function dead-beat observers for linear periodic discrete-time systems†

In this paper two problems are considered: that of finding a (possibly dynamic) linear periodic controller such that both the regulated output and the control input of a linear periodic discrete-time system become and remain zero, and that of designing a dead-beat observer of a linear function of the state of the system. For both these problems necessary and sufficient conditions for the existence of a solution are given, and synthesis procedures of both the controller and the observer are provided by the sufficiency proofs. Such conditions are very simple and concise when expressed in terms of controllable and/or unreconstructible states.

[1]  Masao Ikeda,et al.  Linear function observer for linear discrete-time systems , 1975 .

[2]  G. Franklin,et al.  Deadbeat control and tracking of discrete-time systems , 1982 .

[3]  B. Porter,et al.  Design of dead-beat controllers and full-order observers for linear multivariable discrete-time plants , 1975 .

[4]  B. Leden Dead-beat control and the Riccati equation , 1976 .

[5]  M. Kono Eigenvalue assignment in linear periodic discrete-time systems† , 1980 .

[6]  P. Brunovský Controllability and linear closed-loop controls in linear periodic systems , 1969 .

[7]  A. Isidori,et al.  Output regulation of a class of bilinear systems under constant disturbances , 1979, Autom..

[8]  Vladimír Kučera The structure and properties of time-optimal discrete linear control , 1971 .

[9]  John O'Reilly,et al.  Observers for Linear Systems , 1983 .

[10]  D. Corrall On the stability of periodically time varying systems , 1979 .

[11]  C. Maffezzoni,et al.  Periodic Systems: Controllability and the Matrix Riccati Equation , 1978 .

[12]  D. Williamson,et al.  Design of low-order observers for linear feedback control laws , 1972 .

[13]  S. Bittanti,et al.  Periodic solutions of periodic Riccati equations , 1984 .

[14]  Hajime Akashi,et al.  Output deadbeat controllers with stability for discrete-time multivariable linear systems , 1978 .

[15]  O. M. Grasselli,et al.  On the stabilization of a class of bilinear systems , 1983 .

[16]  Hajime Akashi,et al.  On time optimal control of linear discrete-time systems by geometric approach , 1978 .

[17]  John O'reilly The deadbeat control of linear multivariable systems with inaccessible state , 1980 .

[18]  C. Mullis,et al.  Time optimal discrete regulator gains , 1972 .

[19]  C. Thisayakorn,et al.  On the design of observers with specified eigenvalues , 1975 .

[20]  Hidenori Kimura,et al.  Minimal-time minimal-order deadbeat regulator with internal stability , 1981 .

[21]  B. Porter Deadbeat state reconstruction of linear multivariable discrete-time systems , 1973 .

[22]  R. E. Kalman,et al.  On the general theory of control systems , 1959 .

[23]  Leonard Weiss,et al.  Controllability, Realization and Stability of Discrete-Time Systems , 1972 .

[24]  James B. Farison,et al.  The matrix properties of minimum-time discrete linear regulator control , 1970 .

[25]  Kunihiko Ichikawa,et al.  Discrete-time fast regulator with fast observer , 1978 .

[26]  Hajime Akashi,et al.  Minimum time output regulation problem of linear discrete-time systems , 1977 .

[27]  O. M. Grasselli,et al.  Dead-beat control of linear periodic discrete-time systems† , 1981 .

[28]  H. Seraji,et al.  Deadbeat control of discrete-time systems using output feedback , 1975 .

[29]  Michael A. Arbib,et al.  Topics in Mathematical System Theory , 1969 .

[30]  James B. Farison,et al.  Controller design for discrete systems subjected to disturbances , 1978 .

[32]  O. M. Grasselli,et al.  A canonical decomposition of linear periodic discrete-time systems , 1984 .

[33]  G. Hewer Periodicity, Detectability and the Matrix Riccati Equation , 1975 .