Total Synthesis of Marine Natural Products: Cephalosporolides

[1]  R. Sreenivasulu,et al.  A concise stereoselective total synthesis of (−)-cephalosporolide D , 2016, Monatshefte für Chemie - Chemical Monthly.

[2]  Y. Umanadh,et al.  A Concise Stereoselective Total Synthesis of (–) - Cephalosporolide D , 2015 .

[3]  Jinshan Li,et al.  Total synthesis of proposed cephalosporolides H and I , 2015 .

[4]  R. Fernandes,et al.  A concise protecting-group-free synthesis of cephalosporolides E and F , 2015 .

[5]  Omar Cortezano-Arellano,et al.  Total synthesis of cephalosporolide E via a tandem radical/polar crossover reaction. The use of the radical cations under nonoxidative conditions in total synthesis. , 2015, The Journal of organic chemistry.

[6]  C. Ramana,et al.  Total synthesis of naturally occurring cephalosporolides E/F , 2014 .

[7]  R. Sreenivasulu,et al.  An Alternative Stereoselective Total Synthesis of (+)-Cephalosporolide D , 2014 .

[8]  L. Eppakayala,et al.  Stereoselective synthesis of (-) Cephalosporolide D , 2014 .

[9]  Ka-Ho Lee,et al.  Structural revision of cephalosporolide J and bassianolone. , 2014, The Journal of organic chemistry.

[10]  M. Brimble,et al.  Synthesis of the spiroacetal core of the cephalosporolide family of natural products , 2014 .

[11]  Yuan Liu,et al.  Cephalosporolide B serving as a versatile synthetic precursor: asymmetric biomimetic total syntheses of cephalosporolides C, E, F, G, and (4-OMe-)G. , 2013, Organic letters.

[12]  R. Fernandes,et al.  Total Synthesis of Both Spiroketal Diastereomers of the Reported Structure of Cephalosporolide H , 2013 .

[13]  Changgui Zhao,et al.  Concise enantioselective synthesis of cephalosporolide B, (4R)-4-OMe-cephalosporolide C, and (4S)-4-OMe-cephalosporolide C. , 2013, Chemistry, an Asian journal.

[14]  Robert Britton,et al.  Enantioselective synthesis of spiroacetals via silver(I)-promoted alkylation of hemiacetals: total synthesis of cephalosporolides E and F. , 2012, Organic letters.

[15]  R. Fernandes,et al.  A protecting-group-free synthesis of Hagen's gland lactones. , 2012, The Journal of organic chemistry.

[16]  G. Dudley,et al.  On the proposed structures and stereocontrolled synthesis of the cephalosporolides , 2012, Beilstein journal of organic chemistry.

[17]  M. Brimble,et al.  A convergent synthesis of the (4.4]-spiroacetal-γ-lactones cephalosporolides E and F , 2011 .

[18]  J. Yadav,et al.  Synthesis of (−)-Cephalosporolide D Using an Iterative Acetylene–Epoxide Coupling Strategy , 2011 .

[19]  V. Satam,et al.  2-Iodoxybenzoic Acid (IBX): an Efficient Hypervalent Iodine Reagent , 2010 .

[20]  G. Dudley,et al.  Stereocontrol of 5,5-spiroketals in the synthesis of cephalosporolide H epimers. , 2010, Organic letters.

[21]  J. Rao,et al.  Stereoselective synthesis (+)-cephalosporolide D , 2010 .

[22]  R. Fernandes,et al.  Total Synthesis of (+)-Cephalosporolide E and (―)-Cephalosporolide F en route to Bassianolone , 2010 .

[23]  M. C. Carreño,et al.  Concise enantioselective synthesis of the ten-membered lactone cephalosporolide G and its C-3 epimer. , 2009, Chemistry.

[24]  Sean P. Brown,et al.  Enantioselective linchpin catalysis by SOMO catalysis: an approach to the asymmetric alpha-chlorination of aldehydes and terminal epoxide formation. , 2009, Angewandte Chemie.

[25]  C. Ramana,et al.  Pd(II)-mediated alkynediol spiroketalization: first total synthesis of (-)-cephalosporolide E and (+)-cephalosporolide F. , 2009, The Journal of organic chemistry.

[26]  X. She,et al.  Facile total synthesis of the antimalarial nonenolide , 2008 .

[27]  B. Lipshutz,et al.  Olefin cross-metathesis reactions at room temperature using the nonionic amphiphile "PTS": just add water. , 2008, Organic letters.

[28]  Alfonso Latorre,et al.  Direct stereocontrolled synthesis of polyoxygenated hydrobenzofurans and hydrobenzopyrans from p-peroxy quinols. , 2007, Organic Letters.

[29]  Wenhan Lin,et al.  Cephalosporolides H and I, two novel lactones from a marine-derived fungus, penicillium sp. , 2007, Archives of pharmacal research.

[30]  J. Falck,et al.  Epoxygenase eicosanoids: synthesis of tetrahydrofuran-diol metabolites and their vasoactivity. , 2007, Bioorganic & medicinal chemistry letters.

[31]  L. Longo,et al.  Bicyclic β-Hydroxytetrahydrofurans as Precursors of Medium Ring Keto-Lactones , 2007 .

[32]  Jennifer I. Aird,et al.  An Evans-Tishchenko-ring-closing metathesis approach to medium-ring lactones. , 2007, Organic letters.

[33]  M. C. Carreño,et al.  Oxidative de-aromatization of para-alkyl phenols into para-peroxyquinols and para-quinols mediated by oxone as a source of singlet oxygen. , 2006, Angewandte Chemie.

[34]  M. Kurosu,et al.  Effect of water on Keck's catalytic asymmetric allylations of aldehydes , 2005 .

[35]  S. Chandrasekhar,et al.  The first stereoselective total synthesis of (6S)-5,6-dihydro-6-[(2R)-2- hydroxy-6-phenylhexyl]-2H-pyran-2-one , 2004 .

[36]  Junichiro Yamaguchi,et al.  Direct Proline-Catalyzed Asymmetricα-Aminoxylation of Ketones , 2004 .

[37]  Junichiro Yamaguchi,et al.  Direct Proline‐Catalyzed Asymmetric α‐Aminoxylation of Ketones , 2004 .

[38]  Isamu Shiina An effective method for the synthesis of carboxylic esters and lactones using substituted benzoic anhydrides with Lewis acid catalysts , 2004 .

[39]  C. Ireland,et al.  Marine-derived fungi: a chemically and biologically diverse group of microorganisms. , 2004, Natural product reports.

[40]  Junichiro Yamaguchi,et al.  Direct proline catalyzed asymmetric α-aminooxylation of aldehydes , 2003 .

[41]  R. Grubbs,et al.  A general model for selectivity in olefin cross metathesis. , 2003, Journal of the American Chemical Society.

[42]  S. Blechert,et al.  Jüngste Entwicklungen bei der gekreuzten Olefinmetathese , 2003 .

[43]  S. Blechert,et al.  Recent developments in olefin cross-metathesis. , 2003, Angewandte Chemie.

[44]  L. Longo,et al.  Efficient entry into medium-ring keto-lactones. The ruthenium tetraoxide-promoted oxidative cleavage of beta-hydroxyethers. , 2003, Organic letters.

[45]  T. Hashimoto,et al.  Bis(((S)-binaphthoxy)(isopropoxy)titanium) oxide as a mu-oxo-type chiral Lewis acid: application to catalytic asymmetric allylation of aldehydes. , 2003, Journal of the American Chemical Society.

[46]  C. Forsyth,et al.  Highly chemoselective oxidation of 1,5-diols to δ-lactones with TEMPO/BAIB , 2003 .

[47]  B. List Proline-catalyzed asymmetric reactions , 2002 .

[48]  K. Nicolaou,et al.  Modulation of the Reactivity Profile of IBX by Ligand Complexation: Ambient Temperature Dehydrogenation of Aldehydes and Ketones to α,β‐Unsaturated Carbonyl Compounds , 2002 .

[49]  Scott E Schaus,et al.  Highly selective hydrolytic kinetic resolution of terminal epoxides catalyzed by chiral (salen)Co(III) complexes. Practical synthesis of enantioenriched terminal epoxides and 1,2-diols. , 2002, Journal of the American Chemical Society.

[50]  T. Mukaiyama,et al.  Magnesium Bromide Diethyl Etherate Mediated Highly Diastereoselective Aldol Reaction between an Aldehyde and a Silyl Enol Ether , 2001 .

[51]  N. Sato,et al.  FACILE SYNTHESIS OF SATURATED EIGHT-MEMBERED RING LACTONES , 2001 .

[52]  T. Ishii,et al.  Stereoselective total synthesis of cephalosporolide D , 2000 .

[53]  T. Widlanski,et al.  Facile Preparation of Nucleoside-5'-carboxylic Acids. , 1999, The Journal of organic chemistry.

[54]  E. Corey,et al.  Reduction of Carbonyl Compounds with Chiral Oxazaborolidine Catalysts: A New Paradigm for Enantioselective Catalysis and a Powerful New Synthetic Method. , 1998, Angewandte Chemie.

[55]  E. J. Corey,et al.  Reduktion von Carbonylverbindungen mit chiralen Oxazaborolidin‐Katalysatoren: eine neue enantioselektive Katalyse und leistungsfähige Synthesemethode , 1998 .

[56]  T. Ishii,et al.  Determination of Relative and Absolute Stereochemistry of Cephalosporolide D and Its Enantioselective Total Synthesis , 1998 .

[57]  A. Mico,et al.  A Versatile and Highly Selective Hypervalent Iodine (III)/2,2,6,6-Tetramethyl-1-piperidinyloxyl-Mediated Oxidation of Alcohols to Carbonyl Compounds , 1997 .

[58]  M. Tokunaga,et al.  Asymmetric catalysis with water: efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis. , 1997, Science.

[59]  M. Zerlin,et al.  Decanolides, 10-membered lactones of natural origin , 1997 .

[60]  M. Robins,et al.  EFFICIENT DEHOMOLOGATION OF DI-O-ISOPROPYLIDENEHEXOFURANOSE DERIVATIVES TO GIVE O-ISOPROPYLIDENEPENTOFURANOSES BY SEQUENTIAL TREATMENT WITH PERIODIC ACID IN ETHYL ACETATE AND SODIUM BOROHYDRIDE , 1996 .

[61]  J. F. Gordon,et al.  Two C10 lactones from cephalosporium aphidicola , 1995 .

[62]  M. VanNieuwenhze,et al.  Catalytic Asymmetric Dihydroxylation , 1994 .

[63]  T. Durand,et al.  Synthesis of 3,5-dideoxy-5-iodo-1,2-O-isopropylidene-β-L-lyxo-hexofuranose derivatives , 1994 .

[64]  N. Sato,et al.  Total Synthesis of Octalactin A and B , 1994 .

[65]  Isamu Shiina,et al.  A Novel Method for the Preparation of Macrolides from ω-Hydroxycarboxylic Acids , 1994 .

[66]  G. E. Keck,et al.  Catalytic asymmetric allylation (CAA) reactions. II. A new enantioselective allylation procedure , 1993 .

[67]  G. E. Keck,et al.  Catalytic asymmetric allylation of aldehydes , 1993 .

[68]  E. J. Thomas,et al.  Stereoselective synthesis of aliphatic 1,5,9,13-polyols using (δ-alkoxyallyl)stannanes , 1993 .

[69]  Isamu Shiina,et al.  Catalytic asymmetric aldol-type reaction using a chiral tin(II) Lewis acid , 1993 .

[70]  Jens Hartung,et al.  The Osmium-Catalyzed Asymmetric Dihydroxylation: A New Ligand Class and a Process Improvement , 1992 .

[71]  W. Amberg,et al.  New ligands double the scope of the catalytic asymmetric dihydroxylation of olefins , 1991 .

[72]  Isamu Shiina,et al.  Asymmetric aldol reaction between achiral silyl enol ethers and achiral aldehydes by use of a chiral promoter system , 1991 .

[73]  T. Mukaiyama,et al.  Catalytic asymmetric aldol reaction of the silyl enol ether of acetic acid thioester with aldehydes using chiral tin(II) Lewis acid , 1991 .

[74]  Isamu Shiina,et al.  Catalytic Asymmetric Aldol Reaction of Silyl Enol Ethers with Aldehydes by the Use of Chiral Diamine Coordinated Tin(II) Triflate , 1990 .

[75]  Madhavi C. Chander,et al.  Carbohydrates as a practical source of chiral polyhydroxy acetylenes , 1989 .

[76]  K. Maruoka,et al.  Methylaluminum bis(2,6-di-tert-butyl-4-methylphenoxide) as a protecting group for multifunctional molecules: synthetic utility in selective carbonyl reductions , 1988 .

[77]  K. Sharpless,et al.  Catalytic asymmetric epoxidation and kinetic resolution: modified procedures including in situ derivatization , 1987 .

[78]  Ryoji Noyori,et al.  Asymmetric hydrogenation of .beta.-keto carboxylic esters. A practical, purely chemical access to .beta.-hydroxy esters in high enantiomeric purity , 1987 .

[79]  E. Corey,et al.  Highly enantioselective borane reduction of ketones catalyzed by chiral oxazaborolidines. Mechanism and synthetic implications , 1987 .

[80]  T. Penning Inhibition of 5 beta-dihydrocortisone reduction in rat liver cytosol: a rapid spectrophotometric screen for nonsteroidal anti-inflammatory drug potency. , 1985, Journal of pharmaceutical sciences.

[81]  P. Hitchcock,et al.  Structures of the cephalosporolides B–F, a group of C10 lactones from Cephalosporium aphidicola , 1985 .

[82]  P. Balaram,et al.  Asymmetric total synthesis of erythromycin. 2. Synthesis of an erythronolide A lactone system , 1981 .

[83]  O. Mitsunobu The Use of Diethyl Azodicarboxylate and Triphenylphosphine in Synthesis and Transformation of Natural Products , 1981 .

[84]  T. Anke,et al.  Antibiotics from basidiomycetes. XI. The biological activity of siccayne, isolated from the marine fungus Halocyphina villosa J. & E. Kohlmeyer. , 1981, The Journal of antibiotics.

[85]  W. Childers,et al.  Oxidation of α,β-un saturated aldehydes , 1981 .

[86]  T. Katsuki,et al.  A rapid esterification by means of mixed anhydride and its application to large-ring lactonization. , 1979 .

[87]  E. Corey,et al.  Efficient and mild lactonization method for the synthesis of macrolides , 1974 .

[88]  S. Hanessian,et al.  Reactions of carbohydrates with (halomethylene)dimethyliminium halides and related reagents. Synthesis of some chlorodeoxy sugars , 1969 .

[89]  M. Stiles,et al.  Chelation as a Driving Force in Organic Reactions. IV.1 Synthesis of α-Nitro Acids by Control of the Carboxylation-Decarboxylation Equilibrium2 , 1963 .

[90]  M. Stiles,et al.  CHELATION AS A DRIVING FORCE IN SYNTHESIS. A NEW ROUTE TO α-NITRO ACIDS AND α-AMINO ACIDS , 1959 .