MIN-MAX REPRESENTATIONS OF VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS AND APPLICATIONS IN RARE-EVENT SIMULATION

In this paper a duality relation between the Mane potential and Mather's action functional is derived in the context of convex and state-dependent Hamiltonians. The duality relation is used to obtain min-max representations of viscosity solutions of first order Hamilton-Jacobi equations. These min-max representations naturally suggest classes of subsolutions of Hamilton-Jacobi equations that arise in the theory of large deviations. The subsolutions, in turn, are good candidates for designing efficient rare- event simulation algorithms.

[1]  Antonio Siconolfi,et al.  Existence of C1 critical subsolutions of the Hamilton-Jacobi equation , 2004 .

[2]  J. Mather Variational construction of connecting orbits , 1993 .

[3]  Paul Dupuis,et al.  Importance Sampling for Weighted-Serve-the-Longest-Queue , 2009, Math. Oper. Res..

[4]  Yi Cai,et al.  Analysis of an interacting particle method for rare event estimation , 2013, Queueing Syst. Theory Appl..

[5]  Ezequiel Maderna,et al.  Weak kam theorem on non compact manifolds , 2007, 1502.06247.

[6]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[7]  G. Barles Solutions de viscosité des équations de Hamilton-Jacobi , 1994 .

[8]  Konstantinos Spiliopoulos,et al.  Escaping from an attractor: Importance sampling and rest points I , 2013, 1303.0450.

[9]  P. Moral,et al.  Genealogical particle analysis of rare events , 2005, math/0602525.

[10]  E. Vanden-Eijnden,et al.  Rare Event Simulation of Small Noise Diffusions , 2012 .

[11]  Paul Dupuis,et al.  The design and analysis of a generalized RESTART/DPR algorithm for rare event simulation , 2011, Ann. Oper. Res..

[12]  P. Dupuis,et al.  Splitting for rare event simulation : A large deviation approach to design and analysis , 2007, 0711.2037.

[13]  T. Kurtz,et al.  Large Deviations for Stochastic Processes , 2006 .

[14]  R. Newcomb VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS , 2010 .

[15]  L. Evans,et al.  On Hopf's formulas for solutions of Hamilton-Jacobi equations , 1984 .

[16]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[17]  R. Mañé,et al.  Lagrangian flows: The dynamics of globally minimizing orbits , 1997 .

[18]  Albert Fathi,et al.  Weak KAM Theorem in Lagrangian Dynamics , 2001 .

[19]  P. Lions,et al.  Some Properties of Viscosity Solutions of Hamilton-Jacobi Equations. , 1984 .

[20]  A. Fathi Weak KAM from a PDE point of view: viscosity solutions of the Hamilton–Jacobi equation and Aubry set , 2012, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[21]  Gerardo Rubino,et al.  Rare Event Simulation using Monte Carlo Methods , 2009 .

[22]  P. Glasserman,et al.  Counterexamples in importance sampling for large deviations probabilities , 1997 .

[23]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[24]  Paul Dupuis,et al.  Subsolutions of an Isaacs Equation and Efficient Schemes for Importance Sampling , 2005, Math. Oper. Res..

[25]  I. Dolcetta Representations of Solutions of Hamilton-Jacobi Equations , 2003 .

[26]  Alan Weiss,et al.  Large Deviations For Performance Analysis: Queues, Communication and Computing , 1995 .

[27]  Patrick Bernard,et al.  The Lax–Oleinik semi-group: a Hamiltonian point of view , 2012, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[28]  Michel Mandjes,et al.  Large Deviations for Performance Analysis: Queues, Communications, and Computing , Adam Shwartz and Alan Weiss (New York: Chapman and Hall, 1995). , 1996, Probability in the Engineering and Informational Sciences.

[29]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[30]  P. Dupuis,et al.  Dynamic importance sampling for queueing networks , 2007, 0710.4389.

[31]  Paul Dupuis,et al.  Importance sampling for Jackson networks , 2009, Queueing Syst. Theory Appl..

[32]  R. Carmona,et al.  Particle Methods For The Estimation Of Credit Portfolio Loss Distributions , 2010 .

[33]  Peter W. Glynn,et al.  Stochastic Simulation: Algorithms and Analysis , 2007 .

[34]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[35]  P. Dupuis,et al.  Importance Sampling, Large Deviations, and Differential Games , 2004 .