Non-square matrix sensing without spurious local minima via the Burer-Monteiro approach

We consider the non-square matrix sensing problem, under restricted isometry property (RIP) assumptions. We focus on the non-convex formulation, where any rank-$r$ matrix $X \in \mathbb{R}^{m \times n}$ is represented as $UV^\top$, where $U \in \mathbb{R}^{m \times r}$ and $V \in \mathbb{R}^{n \times r}$. In this paper, we complement recent findings on the non-convex geometry of the analogous PSD setting [5], and show that matrix factorization does not introduce any spurious local minima, under RIP.

[1]  Renato D. C. Monteiro,et al.  A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization , 2003, Math. Program..

[2]  Renato D. C. Monteiro,et al.  Digital Object Identifier (DOI) 10.1007/s10107-004-0564-1 , 2004 .

[3]  Scott Aaronson,et al.  The learnability of quantum states , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[4]  E. Candès,et al.  Compressed sensing and robust recovery of low rank matrices , 2008, 2008 42nd Asilomar Conference on Signals, Systems and Computers.

[5]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[6]  A. Willsky,et al.  Sparse and low-rank matrix decompositions , 2009, 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[7]  Lieven Vandenberghe,et al.  Interior-Point Method for Nuclear Norm Approximation with Application to System Identification , 2009, SIAM J. Matrix Anal. Appl..

[8]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[9]  Francis R. Bach,et al.  Low-Rank Optimization on the Cone of Positive Semidefinite Matrices , 2008, SIAM J. Optim..

[10]  Emmanuel J. Candès,et al.  Tight Oracle Inequalities for Low-Rank Matrix Recovery From a Minimal Number of Noisy Random Measurements , 2011, IEEE Transactions on Information Theory.

[11]  Rachel Ward,et al.  New and Improved Johnson-Lindenstrauss Embeddings via the Restricted Isometry Property , 2010, SIAM J. Math. Anal..

[12]  Yi-Kai Liu,et al.  Universal low-rank matrix recovery from Pauli measurements , 2011, NIPS.

[13]  Aswin C. Sankaranarayanan,et al.  SpaRCS: Recovering low-rank and sparse matrices from compressive measurements , 2011, NIPS.

[14]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[15]  Adel Javanmard,et al.  Localization from Incomplete Noisy Distance Measurements , 2011, Foundations of Computational Mathematics.

[16]  Yaoliang Yu,et al.  Accelerated Training for Matrix-norm Regularization: A Boosting Approach , 2012, NIPS.

[17]  Steven T. Flammia,et al.  Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators , 2012, 1205.2300.

[18]  Volkan Cevher,et al.  Matrix Recipes for Hard Thresholding Methods , 2012, Journal of Mathematical Imaging and Vision.

[19]  Dale Schuurmans,et al.  Convex Co-embedding , 2014, AAAI.

[20]  Prateek Jain,et al.  Computing Matrix Squareroot via Non Convex Local Search , 2015, ArXiv.

[21]  Martha White,et al.  Scalable Metric Learning for Co-Embedding , 2015, ECML/PKDD.

[22]  Zhi-Quan Luo,et al.  Guaranteed Matrix Completion via Non-Convex Factorization , 2014, IEEE Transactions on Information Theory.

[23]  John D. Lafferty,et al.  A Convergent Gradient Descent Algorithm for Rank Minimization and Semidefinite Programming from Random Linear Measurements , 2015, NIPS.

[24]  Furong Huang,et al.  Escaping From Saddle Points - Online Stochastic Gradient for Tensor Decomposition , 2015, COLT.

[25]  Zhaoran Wang,et al.  A Nonconvex Optimization Framework for Low Rank Matrix Estimation , 2015, NIPS.

[26]  Christopher De Sa,et al.  Global Convergence of Stochastic Gradient Descent for Some Non-convex Matrix Problems , 2014, ICML.

[27]  Robert L. Kosut,et al.  Quantum tomography protocols with positivity are compressed sensing protocols , 2015, npj Quantum Information.

[28]  Martin J. Wainwright,et al.  Fast low-rank estimation by projected gradient descent: General statistical and algorithmic guarantees , 2015, ArXiv.

[29]  John Wright,et al.  A Geometric Analysis of Phase Retrieval , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[30]  Anastasios Kyrillidis,et al.  Dropping Convexity for Faster Semi-definite Optimization , 2015, COLT.

[31]  Justin K. Romberg,et al.  An Overview of Low-Rank Matrix Recovery From Incomplete Observations , 2016, IEEE Journal of Selected Topics in Signal Processing.

[32]  Nicolas Boumal,et al.  The non-convex Burer-Monteiro approach works on smooth semidefinite programs , 2016, NIPS.

[33]  John D. Lafferty,et al.  Convergence Analysis for Rectangular Matrix Completion Using Burer-Monteiro Factorization and Gradient Descent , 2016, ArXiv.

[34]  Nathan Srebro,et al.  Global Optimality of Local Search for Low Rank Matrix Recovery , 2016, NIPS.

[35]  Sham M. Kakade,et al.  Provable Efficient Online Matrix Completion via Non-convex Stochastic Gradient Descent , 2016, NIPS.

[36]  Nicolas Boumal,et al.  On the low-rank approach for semidefinite programs arising in synchronization and community detection , 2016, COLT.

[37]  Anima Anandkumar,et al.  Efficient approaches for escaping higher order saddle points in non-convex optimization , 2016, COLT.

[38]  Anastasios Kyrillidis,et al.  Provable non-convex projected gradient descent for a class of constrained matrix optimization problems , 2016, ArXiv.

[39]  Martha White,et al.  Global optimization of factor models using alternating minimization , 2016, ArXiv.

[40]  Michael I. Jordan,et al.  Gradient Descent Converges to Minimizers , 2016, ArXiv.

[41]  Constantine Caramanis,et al.  Fast Algorithms for Robust PCA via Gradient Descent , 2016, NIPS.

[42]  Tengyu Ma,et al.  Matrix Completion has No Spurious Local Minimum , 2016, NIPS.

[43]  Max Simchowitz,et al.  Low-rank Solutions of Linear Matrix Equations via Procrustes Flow , 2015, ICML.

[44]  Nicolas Boumal,et al.  Nonconvex Phase Synchronization , 2016, SIAM J. Optim..

[45]  John Wright,et al.  Complete Dictionary Recovery Over the Sphere I: Overview and the Geometric Picture , 2015, IEEE Transactions on Information Theory.

[46]  Anastasios Kyrillidis,et al.  Finding Low-rank Solutions to Matrix Problems, Efficiently and Provably , 2016, SIAM J. Imaging Sci..