Multivariate process capability a bayesian perspective

In this paper an attempt has been made to examine the multivariate versions of the common process capability indices (PCI's) denoted by Cp and Cpk . Markov chain Monte Carlo (MCMC) methods are used to generate sampling distributions for the various PCI's from where inference is performed. Some Bayesian model checking techniques are developed and implemented to examine how well our model fits the data. Finally the methods are exemplified on a historical aircraft data set collected by the Pratt and Whitney Company.

[1]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[2]  J. Besag,et al.  Generalized Monte Carlo significance tests , 1989 .

[3]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[4]  Fred A. Spiring,et al.  A New Measure of Process Capability: Cpm , 1988 .

[5]  Fred A. Spiring,et al.  A multivariate measure of process capability , 1991 .

[6]  N. L. Johnson,et al.  Distributional and Inferential Properties of Process Capability Indices , 1992 .

[7]  S. J. Wierda Multivariate Quality Control-Estimation of the Percentage Good Products , 1992 .

[8]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[9]  P. Odell,et al.  A Numerical Procedure to Generate a Sample Covariance Matrix , 1966 .

[10]  W. R. Buckland,et al.  Distributions in Statistics: Continuous Multivariate Distributions , 1973 .

[11]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[12]  G. Casella,et al.  Explaining the Gibbs Sampler , 1992 .

[13]  Telba Z. Irony,et al.  A general multivariate bayesian process capability index , 1996 .

[14]  Ingram Olkin,et al.  Multivariate Beta Distributions and Independence Properties of the Wishart Distribution , 1964 .

[15]  Samuel Kotz,et al.  Process Capability Indices , 1993 .

[16]  Fred A. Spiring,et al.  Assessing Process Capability: A Bayesian Approach , 1989 .

[17]  Russell A. Boyles,et al.  The Taguchi capability index , 1991 .