Some quantum MDS codes with large minimum distance from generalized Reed-Solomon codes

Quantum maximum-distance-separable (MDS) codes are a significant class of quantum codes. In this paper, we mainly utilize classical Hermitian self-orthogonal generalized Reed-Solomon codes to construct five new classes of quantum MDS codes with large minimum distance.

[1]  Tao Zhang,et al.  Quantum MDS codes with large minimum distance , 2017, Des. Codes Cryptogr..

[2]  Chaoping Xing,et al.  Application of Classical Hermitian Self-Orthogonal MDS Codes to Quantum MDS Codes , 2010, IEEE Transactions on Information Theory.

[3]  Alexei E. Ashikhmin,et al.  Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.

[4]  Guanghui Zhang,et al.  Application of Constacyclic Codes to Quantum MDS Codes , 2014, IEEE Transactions on Information Theory.

[5]  Qin Yue,et al.  New quantum MDS-convolutional codes derived from constacyclic codes , 2015 .

[6]  Tao Zhang,et al.  Quantum Codes Derived From Certain Classes of Polynomials , 2016, IEEE Transactions on Information Theory.

[7]  Pradeep Kiran Sarvepalli,et al.  On Quantum and Classical BCH Codes , 2006, IEEE Transactions on Information Theory.

[8]  Qin Yue,et al.  Construction of some new quantum MDS codes , 2017, Finite Fields Their Appl..

[9]  Shixin Zhu,et al.  New Quantum MDS Codes From Negacyclic Codes , 2013, IEEE Transactions on Information Theory.

[10]  E. Knill,et al.  Theory of quantum error-correcting codes , 1997 .

[11]  Li Zhuo,et al.  Quantum Generalized Reed-Solomon codes , 2008 .

[12]  Zongben Xu,et al.  On [[n,n-4,3]]q Quantum MDS Codes for odd prime power q , 2009, ArXiv.

[13]  Shixin Zhu,et al.  New quantum MDS codes derived from constacyclic codes , 2014, Quantum Inf. Process..

[14]  Xianmang He,et al.  New q-ary quantum MDS codes with distances bigger than $$\frac{q}{2}$$q2 , 2016, Quantum Inf. Process..

[15]  Giuliano G. La Guardia,et al.  New Quantum MDS Codes , 2011, IEEE Transactions on Information Theory.

[16]  T. Beth,et al.  On optimal quantum codes , 2003, quant-ph/0312164.

[17]  Xianmang He,et al.  New q-ary Quantum MDS Codes with Distances Bigger than q/2 , 2015, ArXiv.

[18]  Martin Rötteler,et al.  On quantum MDS codes , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[19]  Haibin Kan,et al.  Quantum MDS codes with relatively large minimum distance from Hermitian self-orthogonal codes , 2017, Des. Codes Cryptogr..

[20]  Keqin Feng,et al.  Quantum codes [[6, 2, 3]]p and [[7, 3, 3]]p (p >= 3) exist , 2002, IEEE Trans. Inf. Theory.

[21]  Y. Edel,et al.  Quantum twisted codes , 2000 .

[22]  N. Sloane,et al.  Quantum error correction via codes over GF(4) , 1996, Proceedings of IEEE International Symposium on Information Theory.

[23]  Andrew M. Steane Enlargement of Calderbank-Shor-Steane quantum codes , 1999, IEEE Trans. Inf. Theory.

[24]  Chaoping Xing,et al.  A Construction of New Quantum MDS Codes , 2013, IEEE Transactions on Information Theory.

[25]  Hao Chen,et al.  Quantum codes from concatenated algebraic-geometric codes , 2005, IEEE Transactions on Information Theory.

[26]  Shixin Zhu,et al.  Constacyclic Codes and Some New Quantum MDS Codes , 2014, IEEE Transactions on Information Theory.

[27]  Santosh Kumar,et al.  Nonbinary Stabilizer Codes Over Finite Fields , 2005, IEEE Transactions on Information Theory.