On the Uniform Random Generation of Non Deterministic Automata Up to Isomorphism

In this paper we address the problem of the uniform random generation of non deterministic automata (NFA) up to isomorphism. First, we show how to use a Monte-Carlo approach to uniformly sample a NFA. Secondly, we show how to use the Metropolis-Hastings Algorithm to uniformly generate NFAs up to isomorphism. Using labeling techniques, we show that in practice it is possible to move into the modified Markov Chain efficiently, allowing the random generation of NFAs up to isomorphism with dozens of states. This general approach is also applied to several interesting subclasses of NFAs (up to isomorphism), such as NFAs having a unique initial states and a bounded output degree. Finally, we prove that for these interesting subclasses of NFAs, moving into the Metropolis Markov chain can be done in polynomial time. Promising experimental results constitute a practical contribution.

[1]  Nelma Moreira,et al.  Enumeration and generation with a string automata representation , 2007, Theor. Comput. Sci..

[2]  Xiaorui Sun On the isomorphism testing of graphs , 2016 .

[3]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[4]  Joseph A. Gallian,et al.  A Dynamic Survey of Graph Labeling , 2009, The Electronic Journal of Combinatorics.

[5]  Moshe Y. Vardi,et al.  Experimental Evaluation of Classical Automata Constructions , 2005, LPAR.

[6]  Cyril Nicaud,et al.  Average Analysis of Glushkov Automata under a BST-Like Model , 2010, FSTTCS.

[7]  Arnaud Carayol,et al.  Distribution of the number of accessible states in a random deterministic automaton , 2012, STACS.

[8]  Kellogg S. Booth,et al.  Isomorphism Testing for Graphs, Semigroups, and Finite Automata Are Polynomially Equivalent Problems , 1978, SIAM J. Comput..

[9]  Vincent Carnino,et al.  Random Generation of Deterministic Acyclic Automata Using Markov Chains , 2011, CIAA.

[10]  M. Mitzenmacher,et al.  Probability and Computing: Chernoff Bounds , 2005 .

[11]  Frédérique Bassino,et al.  Enumeration and random generation of accessible automata , 2007, Theor. Comput. Sci..

[12]  Jean-Marc Champarnaud,et al.  Random generation of DFAs , 2005, Theor. Comput. Sci..

[13]  Rudolf Mathon,et al.  A Note on the Graph Isomorphism counting Problem , 1979, Inf. Process. Lett..

[14]  Cyril Nicaud,et al.  On the Average Size of Glushkov's Automata , 2009, LATA.

[15]  Djelloul Ziadi,et al.  NFAs bitstream-based random generation , 2002, DCFS.

[16]  Mario Vento,et al.  Benchmarking graph-based clustering algorithms , 2009, Image Vis. Comput..

[17]  Elizabeth L. Wilmer,et al.  Markov Chains and Mixing Times , 2008 .

[18]  Vincent Carnino,et al.  Sampling different kinds of acyclic automata using Markov chains , 2012, Theor. Comput. Sci..

[19]  M. W. Shields An Introduction to Automata Theory , 1988 .

[20]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[21]  Cyril Nicaud,et al.  Random Deterministic Automata , 2014, MFCS.

[22]  Eugene M. Luks Isomorphism of Graphs of Bounded Valence Can Be Tested in Polynomial Time , 1980, FOCS.