Interface control of bulk ferroelectric polarization

The control of material interfaces at the atomic level has led to novel interfacial properties and functionalities. In particular, the study of polar discontinuities at interfaces between complex oxides lies at the frontier of modern condensed matter research. Here we employ a combination of experimental measurements and theoretical calculations to demonstrate the control of a bulk property, namely ferroelectric polarization, of a heteroepitaxial bilayer by precise atomic-scale interface engineering. More specifically, the control is achieved by exploiting the interfacial valence mismatch to influence the electrostatic potential step across the interface, which manifests itself as the biased-voltage in ferroelectric hysteresis loops and determines the ferroelectric state. A broad study of diverse systems comprising different ferroelectrics and conducting perovskite underlayers extends the generality of this phenomenon.

[1]  C. Eom,et al.  Enhanced surface diffusion through termination conversion during epitaxial SrRuO3 growth , 2004 .

[2]  Masashi Kawasaki,et al.  Engineered Interface of Magnetic Oxides , 2004, Science.

[3]  T. Zhao,et al.  Multiferroic BiFeO3 films: domain structure and polarization dynamics , 2006 .

[4]  H. Hwang,et al.  BASIC NOTIONS , 2022 .

[5]  Ulrich Dahmen,et al.  Atomic-resolution imaging with a sub-50-pm electron probe. , 2009, Physical review letters.

[6]  Akira Ohtomo,et al.  A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface , 2004, Nature.

[7]  J. Heber Materials science: Enter the oxides , 2009, Nature.

[8]  Ueda,et al.  Ferromagnetism in LaFeO3-LaCrO3 superlattices , 1998, Science.

[9]  H. Orihara,et al.  A theory of D-E hysteresis loop , 1995 .

[10]  V. Garcia,et al.  Giant tunnel electroresistance for non-destructive readout of ferroelectric states , 2009, Nature.

[11]  R. Ramesh,et al.  Universal Ti-rich termination of atomically flat SrTiO3 (001), (110), and (111) surfaces , 2011 .

[12]  Band engineering at interfaces : Theory and numerical experiments , 1998 .

[13]  Hermann Kohlstedt,et al.  Tunneling Across a Ferroelectric , 2006, Science.

[14]  A. Millis,et al.  Whither the oxide interface. , 2012, Nature materials.

[15]  O. Auciello,et al.  Calculation of frequency-dependent coercive field based on the investigation of intrinsic switching kinetics of strained Pb(Zr0.2Ti0.8)O3 thin films , 2011 .

[16]  E. Tsymbal,et al.  Evolution of the Band Alignment at Polar Oxide Interfaces , 2010, 1007.1386.

[17]  H. Hwang,et al.  Termination control of the interface dipole in La 0.7 Sr 0.3 MnO 3 / Nb : SrTiO 3 (001) Schottky junctions , 2008, 0810.3084.

[18]  Akira Ohtomo,et al.  Artificial charge-modulationin atomic-scale perovskite titanate superlattices , 2002, Nature.

[19]  Federico Capasso,et al.  Doping interface dipoles: Tunable heterojunction barrier heights and band‐edge discontinuities by molecular beam epitaxy , 1985 .

[20]  Satoshi Okamoto,et al.  Electronic reconstruction at an interface between a Mott insulator and a band insulator , 2004, Nature.

[21]  N. D. Mathur,et al.  Ferroelectric Control of Spin Polarization , 2010, Science.

[22]  Ahn,et al.  Electrostatic modulation of superconductivity in ultrathin GdBa2Cu3O7-x films , 1999, Science.

[23]  N. Binggeli,et al.  Influence of the interface atomic structure on the magnetic and electronic properties of La 2/3 Sr 1/3 MnO 3 /SrTiO 3 (001) heterojunctions , 2010 .

[24]  H. Hwang,et al.  A heteroepitaxial perovskite metal-base transistor. , 2011, Nature materials.

[25]  H. Habermeier,et al.  Orbital Reconstruction and Covalent Bonding at an Oxide Interface , 2007, Science.

[26]  H. Koinuma,et al.  Atomic Control of the SrTiO3 Crystal Surface , 1994, Science.

[27]  Stephen Jesse,et al.  Switching spectroscopy piezoresponse force microscopy of ferroelectric materials , 2006 .

[28]  Philippe Ghosez,et al.  Interface Physics in Complex Oxide Heterostructures , 2011 .

[29]  S. Ismail-Beigi,et al.  Electronic and Magnetic Properties of SrTiO3/LaAlO3 Interfaces from First Principles , 2010, Advanced materials.

[30]  J. Mannhart,et al.  Oxide Interfaces—An Opportunity for Electronics , 2010, Science.

[31]  J D Burton,et al.  Suppression of octahedral tilts and associated changes in electronic properties at epitaxial oxide heterostructure interfaces. , 2010, Physical review letters.

[32]  D. Muller,et al.  Why some interfaces cannot be sharp , 2005, cond-mat/0510491.

[33]  J. E. ten Elshof,et al.  Atomically Defined Rare‐Earth Scandate Crystal Surfaces , 2010 .

[34]  S.-W. Cheong,et al.  Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3 , 2009, Science.

[35]  M. J. Lee,et al.  Interface ferromagnetism and orbital reconstruction in BiFeO3-La(0.7)Sr(0.3)MnO3 heterostructures. , 2010, Physical review letters.

[36]  Mathews,et al.  Ferroelectric Field Effect Transistor Based on Epitaxial Perovskite Heterostructures , 1997, Science.

[37]  Sergei V. Kalinin,et al.  Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials. , 2008, Nature materials.

[38]  U Zeitler,et al.  Magnetic effects at the interface between non-magnetic oxides. , 2007, Nature materials.

[39]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[40]  R. Wallace,et al.  High-κ gate dielectrics: Current status and materials properties considerations , 2001 .

[41]  M D Rossell,et al.  Reversible electric control of exchange bias in a multiferroic field-effect device. , 2010, Nature materials.

[42]  Guido Groeseneken,et al.  Electrical properties of high-κ gate dielectrics: Challenges, current issues, and possible solutions , 2006 .

[43]  N. Reyren,et al.  Superconducting Interfaces Between Insulating Oxides , 2007, Science.

[44]  A. Fert,et al.  Tunnel junctions with multiferroic barriers. , 2007, Nature materials.

[45]  Sergei V. Kalinin,et al.  Polarization Control of Electron Tunneling into Ferroelectric Surfaces , 2009, Science.

[46]  D. Blank,et al.  Structure–Property Relation of SrTiO3/LaAlO3 Interfaces , 2008, 0809.1068.