Symmetric Ge2Sb2Te5 based metamaterial absorber induced dynamic wide-gamut structural color

Plasmonic color has played a critical role for its applications in color printing and display owing to the advantages of high-resolution and durability. Recently, increasing attempts have been performed to actualize dynamic structural color. Here theoretically proposed is the generation of wide color gamut in symmetric Ge2Sb2Te5 (GST) based metamaterial absorber. By introducing a periodic metallic nanodisk array on top of the composite structure, the color variation arises from GST transition between amorphous phase and crystalline phase can be enhanced significantly. Due to the interplay of the localized/propagating surface plasmons, Fabry–Perot cavity mode and Wood’s anomaly with different resonant frequencies, both hue and saturation of the structural color can be tuned accordingly through adjusting the structural geometry of the nanodisks. It is demonstrated that up to 74% and 94% of the sRGB and CMY(K) space can be obtained with this phase-change metamaterial display. This finding paves the way toward the development of practical platform for color printing and display applications.

[1]  Shuyuan Xiao,et al.  Optical radiation manipulation of Si-Ge2Sb2Te5 hybrid metasurfaces. , 2020, Optics express.

[2]  C. Gu,et al.  Realization of a near-infrared active Fano-resonant asymmetric metasurface by precisely controlling the phase transition of Ge2Sb2Te5. , 2020, Nanoscale.

[3]  Shulin Sun,et al.  Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material. , 2020, Nanoscale.

[4]  Zhaxylyk A. Kudyshev,et al.  Colors with plasmonic nanostructures: A full-spectrum review , 2019 .

[5]  C. David Wright,et al.  A Nonvolatile Phase‐Change Metamaterial Color Display , 2019, Advanced Optical Materials.

[6]  D. Choi,et al.  Ultrahighly Saturated Structural Colors Enhanced by Multipolar-Modulated Metasurfaces. , 2019, Nano letters.

[7]  Seeram Ramakrishna,et al.  Wide-Gamut Plasmonic Color Palettes with Constant Subwavelength Resolution. , 2019, ACS nano.

[8]  H. Duan,et al.  Large‐Area, Optical Variable‐Color Metasurfaces Based on Pixelated Plasmonic Nanogratings , 2019, Advanced Optical Materials.

[9]  M. Kunitski,et al.  Double-slit photoelectron interference in strong-field ionization of the neon dimer , 2018, Nature Communications.

[10]  Na Liu,et al.  Scanning Plasmonic Color Display. , 2018, ACS nano.

[11]  Ping Gao,et al.  Tailoring active color rendering and multiband photodetection in a vanadium-dioxide-based metamaterial absorber , 2018 .

[12]  Nikolay I. Zheludev,et al.  Phase-change-driven dielectric-plasmonic transitions in chalcogenide metasurfaces , 2018, NPG Asia Materials.

[13]  Zhiyuan Cheng,et al.  Broader color gamut of color-modulating optical coating display based on indium tin oxide and phase change materials. , 2018, Applied optics.

[14]  Fangfang Yu,et al.  Dynamic Plasmonic Color Generation Based on Phase Transition of Vanadium Dioxide , 2018 .

[15]  On the correlation of absorption cross-section with plasmonic color generation. , 2017, Optics express.

[16]  Chao Zhang,et al.  Two-Dimensional Active Tuning of an Aluminum Plasmonic Array for Full-Spectrum Response. , 2017, Nano letters.

[17]  C. Wright,et al.  Phase-change devices for simultaneous optical-electrical applications , 2017, Scientific Reports.

[18]  C. Moon,et al.  Electrical Broad Tuning of Plasmonic Color Filter Employing an Asymmetric-Lattice Nanohole Array of Metasurface Controlled by Polarization Rotator , 2017 .

[19]  Shin-Tson Wu,et al.  Actively addressed single pixel full-colour plasmonic display , 2017, Nature Communications.

[20]  A. Salomon,et al.  Spatial Confinement of Light onto a Flat Metallic Surface Using Hybridization between Two Cavities , 2017 .

[21]  Changtao Wang,et al.  Actively Tunable Structural Color Rendering with Tensile Substrate , 2017 .

[22]  Na Liu,et al.  Dynamic plasmonic colour display , 2017, Nature Communications.

[23]  P. Nordlander,et al.  Plasmonic colour generation , 2017 .

[24]  X. Miao,et al.  Non-binary Colour Modulation for Display Device Based on Phase Change Materials , 2016, Scientific Reports.

[25]  Ann Roberts,et al.  The Plasmonic Pixel: Large Area, Wide Gamut Color Reproduction Using Aluminum Nanostructures. , 2016, Nano letters.

[26]  Junichi Takahara,et al.  Full-Color Subwavelength Printing with Gap-Plasmonic Optical Antennas. , 2016, Nano letters.

[27]  Anders Kristensen,et al.  Plasmonic colour laser printing. , 2016, Nature nanotechnology.

[28]  Jonathan M Cooper,et al.  Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette. , 2016, ACS nano.

[29]  Xuechen Chen,et al.  Mechanical Chameleon through Dynamic Real-Time Plasmonic Tuning. , 2016, ACS nano.

[30]  M. Stalder,et al.  Metallized Gratings Enable Color Effects and Floating Screen Films by First‐Order Diffraction , 2015 .

[31]  O. Martin,et al.  Fano-resonant aluminum and gold nanostructures created with a tunable, up-scalable process. , 2015, Nanoscale.

[32]  Shen-ge Wang,et al.  Continuous color reflective displays using interferometric absorption , 2015 .

[33]  Shin-Tson Wu,et al.  Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces , 2015, Nature Communications.

[34]  Xiaodong Yang,et al.  Structural color printing based on plasmonic metasurfaces of perfect light absorption , 2015, Scientific Reports.

[35]  Cheng-Wei Qiu,et al.  Color generation via subwavelength plasmonic nanostructures. , 2015, Nanoscale.

[36]  Lei Zhang,et al.  Three-dimensional plasmonic stereoscopic prints in full colour , 2014, Nature Communications.

[37]  Eun-Soo Kim,et al.  Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array. , 2014, Nano letters.

[38]  C. David Wright,et al.  An optoelectronic framework enabled by low-dimensional phase-change films , 2014, Nature.

[39]  Anders Kristensen,et al.  Plasmonic metasurfaces for coloration of plastic consumer products. , 2014, Nano letters.

[40]  Cheng-Wei Qiu,et al.  Plasmonic color palettes for photorealistic printing with aluminum nanostructures. , 2014, Nano letters.

[41]  Ole Albrektsen,et al.  Subwavelength plasmonic color printing protected for ambient use. , 2014, Nano letters.

[42]  A. E. Cetin,et al.  Thermal Tuning of Surface Plasmon Polaritons Using Liquid Crystals , 2013 .

[43]  Jinghua Teng,et al.  Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays. , 2013, Nanoscale.

[44]  Huigao Duan,et al.  Printing colour at the optical diffraction limit. , 2012, Nature nanotechnology.

[45]  Haofei Shi,et al.  Structural colors: from plasmonic to carbon nanostructures. , 2011, Small.

[46]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[47]  Shuichi Kinoshita,et al.  Physics of structural colors , 2008 .

[48]  T. Ebbesen,et al.  Plasmonic photon sorters for spectral and polarimetric imaging , 2008 .

[49]  Vladimir M. Shalaev,et al.  Tunable optical negative-index metamaterials employing anisotropic liquid crystals , 2007 .

[50]  Ludovico Cademartiri,et al.  From colour fingerprinting to the control of photoluminescence in elastic photonic crystals , 2006 .

[51]  Matthias Wuttig,et al.  Towards a universal memory? , 2005, Nature materials.

[52]  Wencheng Wu,et al.  The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations , 2005 .

[53]  Gang Xu,et al.  Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films , 2003 .

[54]  Sang Youl Kim,et al.  Variation of the complex refractive indices with Sb-addition in Ge-Sb-Te alloy and their wavelength dependence , 1998, Other Conferences.