He and Ne in individual chromite grains from the regolith breccia Ghubara (L5): Exploring the history of the L chondrite parent body regolith

We analyzed He and Ne in chromite grains from the regolith breccia Ghubara (L5), to compare it with He and Ne in sediment‐dispersed extraterrestrial chromite (SEC) grains from mid‐Ordovician sediments. These SEC grains arrived on Earth as micrometeorites in the aftermath of the L chondrite parent body (LCPB) breakup event, 470 Ma ago. A significant fraction of them show prolonged exposure to galactic cosmic rays for up to several 10 Ma. The majority of the cosmogenic noble gases in these grains were probably acquired in the regolith of the LCPB (Meier et al. ). Ghubara, an L chondritic regolith breccia with an Ar‐Ar shock age of 470 Ma, is a sample of that regolith. We find cosmic‐ray exposure ages of up to several 10 Ma in some Ghubara chromite grains, confirming for the first time that individual chromite grains with such high exposure ages indeed existed in the LCPB regolith, and that the >10 Ma cosmic‐ray exposure ages found in recent micrometeorites are thus not necessarily indicative of an origin in the Kuiper Belt. Some Ghubara chromite grains show much lower concentrations of cosmogenic He and Ne, indicating that the 4π (last‐stage) exposure age of the Ghubara meteoroid lasted only 4–6 Ma. This exposure age is considerably shorter than the 15–20 Ma suggested before from bulk analyses, indicating that bulk samples have seen regolith pre‐exposure as well. The shorter last‐stage exposure age probably links Ghubara to a small peak of 40Ar‐poor L5 chondrites of the same exposure age. Furthermore, and quite unexpectedly, we find a Ne component similar to presolar Ne‐HL in the chromite grains, perhaps indicating that some presolar Ne can be preserved even in meteorites of petrologic type 5.

[1]  Lund,et al.  Cosmic-ray exposure ages of fossil micrometeorites from mid-Ordovician sediments at Lynna River, Russia , 2014, 1408.3524.

[2]  B. Schmitz Extraterrestrial spinels and the astronomical perspective on Earth's geological record and evolution of life , 2013 .

[3]  D. Mittlefehldt,et al.  The quest for regolithic howardites. Part 1: Two trends uncovered using noble gases , 2013 .

[4]  I. Leya,et al.  Cosmogenic production rates and recoil loss effects in micrometeorites and interplanetary dust particles , 2013 .

[5]  I. Leya,et al.  Calculation of Cosmogenic Neon Production from Chromium , 2012 .

[6]  B. Schmitz,et al.  A Russian record of a Middle Ordovician meteorite shower: Extraterrestrial chromite at Lynna River, St. Petersburg region , 2012 .

[7]  J. Weirich,et al.  40Ar‐39Ar age of Northwest Africa 091: More evidence for a link between L chondrites and fossil meteorites , 2012 .

[8]  B. Schmitz,et al.  A global rain of micrometeorites following breakup of the L‐chondrite parent body—Evidence from solar wind‐implanted Ne in fossil extraterrestrial chromite grains from China , 2012 .

[9]  F. Marone,et al.  A 3‐D study of mineral inclusions in chromite from ordinary chondrites using synchrotron radiation X‐ray tomographic microscopy—Method and applications , 2011 .

[10]  B. Schmitz,et al.  Extraterrestrial chromite distribution across the mid-Ordovician Puxi River section, central China: Evidence for a global major spike in flux of L-chondritic matter , 2010 .

[11]  B. Schmitz,et al.  Noble gases in individual L chondritic micrometeorites preserved in an Ordovician limestone , 2010 .

[12]  B. Schmitz,et al.  A single asteroidal source for extraterrestrial Ordovician chromite grains from Sweden and China: High-precision oxygen three-isotope SIMS analysis , 2010 .

[13]  T. Friedmann,et al.  Noble gas composition of the solar wind as collected by the Genesis mission , 2009 .

[14]  J. Masarik,et al.  Cosmogenic nuclides in stony meteorites revisited , 2009 .

[15]  R. Reedy,et al.  Solar cosmic ray records in lunar rock 64455 , 2009 .

[16]  D. Vokrouhlický,et al.  Asteroidal source of L chondrite meteorites , 2009 .

[17]  B. Schmitz,et al.  Relict silicate inclusions in extraterrestrial chromite and their use in the classification of fossil chondritic material , 2009 .

[18]  C. Lorenz,et al.  SEDIMENT-DISPERSED EXTRATERRESTRIAL CHROMITE IN ORDOVICIAN LIMESTONE FROM RUSSIA. , 2009 .

[19]  B. Schmitz,et al.  Noble gases in fossil micrometeorites and meteorites from 470 Myr old sediments from southern Sweden, and new evidence for the L‐chondrite parent body breakup event , 2008 .

[20]  J. Bridges,et al.  Disruption of the L chondrite parent body: New oxygen isotope evidence from Ordovician relict chromite grains , 2007 .

[21]  P. Hoppe,et al.  Presolar He and Ne Isotopes in Single Circumstellar SiC Grains , 2007 .

[22]  M. Trieloff,et al.  L‐chondrite asteroid breakup tied to Ordovician meteorite shower by multiple isochron 40Ar‐39 Ar dating , 2007 .

[23]  C. Broeders,et al.  Global Comparison of TALYS and ALICE Code Calculations and Evaluated Data from ENDF/B, JENDL, FENDL, and JEFF Files with Measured Neutron Induced Reaction Cross-sections at Energies above 0.1 MeV , 2006 .

[24]  F. Wlotzka,et al.  Cr spinel and chromite as petrogenetic indicators in ordinary chondrites: Equilibration temperatures of petrologic types 3.7 to 6 , 2005 .

[25]  B. Schmitz,et al.  Fast delivery of meteorites to Earth after a major asteroid collision , 2004, Nature.

[26]  B. Schmitz,et al.  Sediment-Dispersed Extraterrestrial Chromite Traces a Major Asteroid Disruption Event , 2003, Science.

[27]  A. Boudard,et al.  Intranuclear cascade model for a comprehensive description of spallation reaction data , 2002 .

[28]  T. Osawa,et al.  Noble gas compositions of Antarctic micrometeorites collected at the Dome Fuji Station in 1996 and 1997 , 2002 .

[29]  D. Sears,et al.  The irradiation history of the Ghubara (L5) regolith breccia , 2002 .

[30]  B. Schmitz,et al.  A rain of ordinary chondritic meteorites in the early Ordovician , 2001 .

[31]  R. Wieler,et al.  The production of cosmogenic nuclides by galactic cosmic‐ray particles for 2π exposure geometries , 2001 .

[32]  R. Wieler,et al.  Primordial noble gases in “phase Q” in carbonaceous and ordinary chondrites studied by closed‐system stepped etching , 2000 .

[33]  B. Schmitz,et al.  Geochemistry of meteorite-rich marine limestone strata and fossil meteorites from the lower Ordovician at Kinnekulle, Sweden , 1996 .

[34]  D. Garrison,et al.  Solar-proton-produced neon in shergottite meteorites and implications for their origin , 1995 .

[35]  H. Haack,et al.  Catastrophic fragmentation of asteroids: evidence from meteorites , 1994 .

[36]  G. Huss,et al.  Noble gases in presolar diamonds I: Three distinct components and their implications for diamond origins , 1994 .

[37]  R. Wieler,et al.  He, Ne, and Ar from the solar wind and solar energetic particles in lunar ilmenites and pyroxenes , 1993 .

[38]  Michel Maurette,et al.  Neon measurements of individual Greenland sediment particles : proof of an extraterrestrial origin and comparison with EDX and morphological analyses , 1990 .

[39]  E. Anders,et al.  Interstellar graphite in meteorites , 1990, Nature.

[40]  R. Wieler,et al.  Exposure history of the regolithic chondrite Fayetteville: I. Solar-gas-rich matrix☆ , 1989 .

[41]  M. Lindström,et al.  Discovery of a second Ordovician meteorite using chromite as a tracer , 1988, Nature.

[42]  E. Anders,et al.  Isotopic anomalies of Ne, Xe, and C in meteorites. II - Interstellar diamond and SiC: Carriers of exotic noble gases. III - Local and exotic noble gas components and their interrelations , 1988 .

[43]  E. Steel,et al.  Interstellar diamonds in meteorites , 1987, Nature.

[44]  T. Swindle,et al.  Evidence in meteorites for an active early sun , 1987 .

[45]  R. Reedy,et al.  Cosmic-Ray Record in Solar System Matter , 1983, Science.

[46]  J. Burns,et al.  Radiation forces on small particles in the solar system , 1979 .

[47]  E. Anders,et al.  Host Phase of a Strange Xenon Component in Allende , 1975, Science.

[48]  R. Binns Cognate xenoliths in chondritic meteorites: Examples in Mezö-Madaras and Ghubara , 1968 .

[49]  K. Keil,et al.  Chromite composition in relation to chemistry and texture of ordinary chondrites. , 1967 .

[50]  H. Wänke,et al.  On the origin of gas-rich meteorites. , 1964 .

[51]  T. C. Hughes,et al.  The determination of rubidium and caesium in stony meteorites by neutron activation analysis and by mass spectrometry , 1964 .

[52]  L. Nittler,et al.  A transmission electron microscopy study of presolar spinel , 2014 .

[53]  M. Meier,et al.  Graphite grains in supernova ejecta – Insights from a noble gas study of 91 individual KFC1 presolar graphite grains from the Murchison meteorite , 2012 .

[54]  B. Lavielle,et al.  Solar Wind Isotopic Abundances in 2 mm Surface Layers of Arlington , 2009 .

[55]  E. Scott,et al.  Nature and Origins of Meteoritic Breccias , 2006 .

[56]  U. Ott Noble Gases in Meteorites – Trapped Components , 2002 .

[57]  B. Marty,et al.  Comparative Studies of Solar, Q-Gases and Terrestrial Noble Gases, and Implications on the Evolution of the Solar Nebula , 1998 .

[58]  Gary R. Huss,et al.  PRESOLAR DIAMOND, SIC, AND GRAPHITE IN PRIMITIVE CHONDRITES : ABUNDANCES AS A FUNCTION OF METEORITE CLASS AND PETROLOGIC TYPE , 1995 .

[59]  K. Marti,et al.  COSMIC-RAY EXPOSURE HISTORY OF ORDINARY CHONDRITES , 1992 .

[60]  R. Reedy,et al.  Comparisons between observed and predicted cosmogenic noble gases in lunar samples , 1978 .

[61]  D. Heymann On the origin of hypersthene chondrites: Ages and shock effects of black chondrites , 1967 .