On subspaces of Kloosterman zeros and permutations of the form L1(x-1)+L2(x)

Permutations of the form $F=L_1(x^{-1})+L_2(x)$ with linear functions $L_1,L_2$ are closely related to several interesting questions regarding CCZ-equivalence and EA-equivalence of the inverse function. In this paper, we show that $F$ cannot be a permutation if the kernel of $L_1$ or $L_2$ is too large. A key step of the proof is a new result on the maximal size of a subspace of $\mathbb{F}_{2^n}$ that contains only Kloosterman zeros, i.e. a subspace $V$ such that $K_n(v)=0$ for all $v \in V$ where $K_n(v)$ denotes the Kloosterman sum of $v$.}

[1]  J. Dillon Elementary Hadamard Difference Sets , 1974 .

[2]  G. Lachaud,et al.  The weights of the orthogonals of the extended quadratic binary Goppa codes , 1990, IEEE Trans. Inf. Theory.

[3]  Mitsuru Matsui,et al.  Linear Cryptanalysis Method for DES Cipher , 1994, EUROCRYPT.

[4]  Claude Carlet,et al.  Codes, Bent Functions and Permutations Suitable For DES-like Cryptosystems , 1998, Des. Codes Cryptogr..

[5]  R. Fitzgerald,et al.  Irreducible polynomials over GF(2) with three prescribed coefficients , 2003 .

[6]  Eli Biham,et al.  Differential cryptanalysis of DES-like cryptosystems , 1990, Journal of Cryptology.

[7]  Henk D. L. Hollmann,et al.  Kloosterman sum identities over F2m , 2004, Discret. Math..

[8]  Joseph L. Yucas,et al.  Irreducible polynomials over GF(2) with prescribed coefficients , 2004, Discret. Math..

[9]  Claude Carlet,et al.  New classes of almost bent and almost perfect nonlinear polynomials , 2006, IEEE Transactions on Information Theory.

[10]  Tor Helleseth,et al.  Propagation characteristics of xx-1 and Kloosterman sums , 2007, Finite Fields Their Appl..

[11]  Guang Gong,et al.  Hyperbent Functions, Kloosterman Sums, and Dickson Polynomials , 2008, IEEE Transactions on Information Theory.

[12]  Igor E. Shparlinski,et al.  On the Values of Kloosterman Sums , 2009, IEEE Transactions on Information Theory.

[13]  Alexander Pott,et al.  On the Equivalence of Nonlinear Functions , 2009, Enhancing Cryptographic Primitives with Techniques from Error Correcting Codes.

[14]  Pascale Charpin,et al.  Some results concerning cryptographically significant mappings over GF(2n) , 2010, Des. Codes Cryptogr..

[15]  G. McGuire,et al.  Ternary Kloosterman sums using Stickelberger's theorem and the Gross-Koblitz formula , 2010, 1005.4548.

[16]  Keijo O. Väänänen,et al.  On Integer Values of Kloosterman Sums , 2010, IEEE Transactions on Information Theory.

[17]  Marko J. Moisio,et al.  On zeros of Kloosterman sums , 2011, Des. Codes Cryptogr..

[18]  Yun-jung Kim ALGORITHMS FOR KLOOSTERMAN ZEROS , 2011 .

[19]  Yongqiang Li,et al.  Permutation polynomials EA-equivalent to the inverse function over GF (2n) , 2011, Cryptography and Communications.

[20]  Yongqiang Li,et al.  On EA-equivalence of certain permutations to power mappings , 2011, Des. Codes Cryptogr..

[21]  Faruk Göloglu,et al.  On theorems of Carlitz and Payne on permutation polynomials over finite fields with an application to x-1+L(x) , 2014, Finite Fields Their Appl..

[22]  Petr Lisonek,et al.  On vectorial bent functions with Dillon-type exponents , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[23]  Xiang-dong Hou Lectures on Finite Fields , 2018, Graduate Studies in Mathematics.

[24]  Anne Canteaut,et al.  On CCZ-Equivalence, Extended-Affine Equivalence, and Function Twisting , 2018, IACR Cryptol. ePrint Arch..

[25]  Léo Perrin,et al.  Boomerang uniformity of popular S-box constructions , 2019, IACR Cryptol. ePrint Arch..

[26]  Victor Zinoviev On classical Kloosterman sums , 2019, Cryptography and Communications.

[27]  Marco Calderini,et al.  On relations between CCZ- and EA-equivalences , 2019, Cryptography and Communications.