On Brane Solutions with Intersection Rules Related to Lie Algebras

The review is devoted to exact solutions with hidden symmetries arising in a multidimensional gravitational model containing scalar fields and antisymmetric forms. These solutions are defined on a manifold of the form M = M0 x M1 x . . . x Mn , where all Mi with i >= 1 are fixed Einstein (e.g., Ricci-flat) spaces. We consider a warped product metric on M. Here, M0 is a base manifold, and all scale factors (of the warped product), scalar fields and potentials for monomial forms are functions on M0 . The monomial forms (of the electric or magnetic type) appear in the so-called composite brane ansatz for fields of forms. Under certain restrictions on branes, the sigma-model approach for the solutions to field equations was derived in earlier publications with V.N.Melnikov. The sigma model is defined on the manifold M0 of dimension d0 ≠ 2 . By using the sigma-model approach, several classes of exact solutions, e.g., solutions with harmonic functions, S-brane, black brane and fluxbrane solutions, are obtained. For d0 = 1 , the solutions are governed by moduli functions that obey Toda-like equations. For certain brane intersections related to Lie algebras of finite rank—non-singular Kac–Moody (KM) algebras—the moduli functions are governed by Toda equations corresponding to these algebras. For finite-dimensional semi-simple Lie algebras, the Toda equations are integrable, and for black brane and fluxbrane configurations, they give rise to polynomial moduli functions. Some examples of solutions, e.g., corresponding to finite dimensional semi-simple Lie algebras, hyperbolic KM algebras: H2(q, q) , AE3, HA(1)2, E10 and Lorentzian KM algebra P10 , are presented.

[1]  S. C. Lee Kaluza-Klein dyons and the Toda lattice , 1984 .

[2]  G. Gibbons,et al.  Spacetime as a membrane in higher dimensions , 2001, hep-th/0109093.

[3]  C. Vafa Evidence for F theory , 1996, hep-th/9602022.

[4]  Flux-branes and the dielectric effect in string theory , 2001, hep-th/0105023.

[5]  String theory dynamics in various dimensions , 1995, hep-th/9503124.

[6]  V. Melnikov,et al.  Hydrodynam - ics, Fields and Constants in the Theory of Gravitation , 1983 .

[7]  Intersecting S-brane solutions of D = 11 supergravity , 2002, hep-th/0206057.

[8]  S brane solutions in supergravity theories , 2002, hep-th/0204071.

[9]  I. Stewart,et al.  Infinite-dimensional Lie algebras , 1974 .

[10]  On generalized Melvin solution for the Lie algebra $$E_6$$E6 , 2017, 1706.06621.

[11]  V. Ivashchuk On Symmetries of Target Space for Σ -model of P -brane Origin , 1998 .

[12]  O. Heinrich Charged black holes in compactified higher‐dimensional Einstein‐Maxwell theory , 1988 .

[13]  T. Damour,et al.  E10 and a small tension expansion of m theory. , 2002, Physical review letters.

[14]  Dowker,et al.  Pair creation of dilaton black holes. , 1993, Physical review. D, Particles and fields.

[15]  M. Duff,et al.  Multi-membrane solutions of D = 11 supergravity , 1991 .

[16]  Toda p-brane black holes and polynomials related to Lie algebras , 2000, math-ph/0002048.

[17]  Dilatonic dyon black hole solutions , 2015 .

[18]  V. Ivashchuk MORE M-BRANES ON PRODUCT OF RICCI-FLAT MANIFOLDS , 2011, 1107.4089.

[19]  Dilatonic dyon-like black hole solutions in the model with two Abelian gauge fields , 2017, 1701.02029.

[20]  Block-orthogonal brane systems, black holes and wormholes. , 1997, hep-th/9710207.

[21]  V. Ivashchuk,et al.  Black brane solutions related to non-singular Kac-Moody algebras , 2011, 1101.4409.

[22]  H. Nicolai A hyperbolic Kac-Moody algebra from supergravity , 1992 .

[23]  Luigi M. Ricciardi,et al.  Lectures in applied mathematics and informatics , 1990 .

[24]  R. Güven Black p-brane solutions of D = 11 supergravity theory , 1992 .

[25]  J. Russo,et al.  Exactly solvable string models of curved space-time backgrounds , 1995, hep-th/9502038.

[26]  P. Townsend,et al.  Unity of superstring dualities , 1994, hep-th/9410167.

[27]  P. Moerbeke,et al.  Kowalewski's asymptotic method, Kac-Moody lie algebras and regularization , 1982 .

[28]  Multidimensional Gravitational Models: Fluxbrane and S-Brane Solutions with Polynomials , 2007 .

[29]  A. A. Tseytfin Harmonic superpositions of M-branes , 1996 .

[30]  Horowitz,et al.  Charged black holes in string theory. , 1991, Physical review. D, Particles and fields.

[31]  E11 as E10 representation at low levels , 2003, hep-th/0304246.

[32]  P. Saffin,et al.  A note on the supergravity description of dielectric branes , 2001, hep-th/0106206.

[33]  E. Sezgin,et al.  Beyond E11 , 2017, 1703.01305.

[34]  Composite S-brane solutions related to Toda-type systems , 2002, hep-th/0208101.

[35]  Lisa Carbone,et al.  Classification of hyperbolic Dynkin diagrams, root lengths and Weyl group orbits , 2010, 1003.0564.

[36]  Hyperbolic Kac Moody Algebras and Chaos in Kaluza Klein Models , 2001, hep-th/0103094.

[37]  P-brane Black Holes and Post-Newtonian Approximation , 1999, hep-th/9902148.

[38]  MAJUMDAR-PAPAPETROU-TYPE SOLUTIONS IN THE SIGMA-MODEL AND INTERSECTING P-BRANES , 1998, hep-th/9802121.

[39]  S. Hawking,et al.  Action Integrals and Partition Functions in Quantum Gravity , 1977 .

[40]  A class of Lorentzian Kac-Moody algebras , 2002, hep-th/0205068.

[41]  Mass bounds for multidimensional charged dilatonic black holes , 1994, gr-qc/9405018.

[42]  Solutions with intersecting p-branes related to Toda chains , 1999, hep-th/9907019.

[43]  Kazuharu Bamba,et al.  Inflationary Cosmology in Modified Gravity Theories , 2015, Symmetry.

[44]  The Painleve property, W algebras and Toda field theories associated with hyperbolic Kac-Moody algebras , 1995, hep-th/9503176.

[45]  S. D. Odintsov,et al.  INTRODUCTION TO MODIFIED GRAVITY AND GRAVITATIONAL ALTERNATIVE FOR DARK ENERGY , 2006, hep-th/0601213.

[46]  J. Fuchs,et al.  Symmetries, Lie Algebras and Representations: A Graduate Course for Physicists , 1997 .

[47]  V. Ivashchuk,et al.  Sigma-model solutions and intersecting P-branes related to Lie algebras , 1998, hep-th/9805113.

[48]  D. Singleton,et al.  Avoiding cosmological oscillating behavior for S-brane solutions with diagonal metrics , 2005, gr-qc/0509065.

[49]  A. Papaetrou,et al.  A Static solution of the equations of the gravitational field for an arbitrary charge distribution , 1947 .

[50]  V. Ivashchuk,et al.  Billiard representation for multidimensional cosmology with multicomponent perfect fluid near the singularity , 1994, gr-qc/9407028.

[51]  Multidimensional Classical and Quantum Cosmology with Perfect Fluid , 1995, hep-th/9503223.

[52]  田中 正,et al.  SUPERSTRING THEORY , 1989, The Lancet.

[53]  F. Englert,et al.  Intersection rules for p-branes , 1997, hep-th/9701042.

[54]  Sergei D. Odintsov,et al.  Unified cosmic history in modified gravity: From F ( R ) theory to Lorentz non-invariant models , 2010, 1011.0544.

[55]  Multidimensional Cosmological and Spherically Symmetric Solutions with Intersecting p-Branes , 1999, gr-qc/9901001.

[56]  V. Belinskiǐ,et al.  VIBRATIONAL REGIME OF APPROACH TO A SPECIFIC POINT IN RELATIVISTIC COSMOLOGY. , 1970 .

[57]  K. algebras String duality, automorphic forms, and generalized Kac-Moody algebras , 1997 .

[58]  M. G. Ivanov,et al.  Properties of intersecting p-branes in various dimensions , 1997, hep-th/9702077.

[59]  Wei Yang,et al.  SL(n, R)-Toda black holes , 2013, 1307.2305.

[60]  E. Cremmer,et al.  Supergravity in theory in 11 dimensions , 1978 .

[61]  V. Ivashchuk On Supersymmetric M-brane configurations with an R*1,1 /Z2 submanifold , 2015, 1503.03908.

[62]  P. West,et al.  Kac-Moody symmetries of IIB supergravity , 2001, hep-th/0107181.

[63]  On multidimensional analogs of Melvin’s solution for classical series of Lie algebras , 2009, 1009.3667.

[64]  E10 SYMMETRY IN ONE-DIMENSIONAL SUPERGRAVITY , 1997, hep-th/9703160.

[65]  Hyperbolic Kac–Moody algebra from intersecting p-branes , 1998, hep-th/9803006.

[66]  Black hole p-brane solutions for general intersection rules , 1999, hep-th/9910041.

[67]  Keiichi Maeda,et al.  Black Holes and Membranes in Higher Dimensional Theories with Dilaton Fields , 1988 .

[68]  Explicit solutions of classical generalized toda models , 1979 .

[69]  T. Damour,et al.  TOPICAL REVIEW: Cosmological billiards , 2002 .

[70]  Homogeneous fluxes, branes and a maximally supersymmetric solution of M-theory , 2001, hep-th/0105308.

[71]  M. A. Melvin Pure magnetic and electric geons , 1964 .

[72]  Generating branes via sigma models , 1998, hep-th/9801160.

[73]  P. West,et al.  Very extended Kac Moody algebras and their interpretation at low levels , 2003, hep-th/0309198.

[74]  V. Ivashchuk,et al.  CORRIGENDUM: Sigma-model for the generalized composite p-branes , 1998 .

[75]  G. Gibbons,et al.  Antigravitating Black Hole Solitons with Scalar Hair in N=4 Supergravity , 1982 .

[76]  Composite fluxbranes with general intersections , 2002, hep-th/0202022.

[77]  D. Kastor,et al.  Overlapping Branes in M-Theory , 1996, hep-th/9604179.

[78]  D. Gal’tsov,et al.  “Triangular” extremal dilatonic dyons , 2014, 1412.7709.

[79]  V. Ivashchuk,et al.  Black-brane solution for C2 algebra , 2001, hep-th/0111219.

[80]  J. Alimi,et al.  An S-brane solution with acceleration and small enough variation of G , 2007, 0711.3770.

[81]  G. Gibbons,et al.  Supersymmetric self-gravitating solitons , 1993, hep-th/9310118.

[82]  B. Kostant,et al.  The solution to a generalized Toda lattice and representation theory , 1979 .

[83]  V. Ivashchuk,et al.  Perfect-fluid type solution in multidimensional cosmology , 1989 .

[84]  V. D. Ivashchuk,et al.  Billiard representation for multidimensional cosmology with intersecting p-branes near the singularity , 1999 .

[85]  V. Ivashchuk,et al.  Multidimensional gravity, flux and black brane solutions governed by polynomials , 2014 .

[86]  A. Kirillov,et al.  Stochastic behavior of multidimensional cosmological models near a singularity , 1994 .

[87]  R. Moody A new class of Lie algebras , 1968 .

[88]  On calculation of fluxbrane polynomials corresponding to classical series of Lie algebras , 2008, 0804.0757.

[89]  P. West The IIA, IIB and eleven-dimensional theories and their common E(11) origin , 2004, hep-th/0402140.

[90]  On flux integrals for generalized Melvin solution related to simple finite-dimensional Lie algebra , 2017, 1706.07856.

[91]  V. Kozlov,et al.  POLYNOMIAL INTEGRALS OF HAMILTONIAN SYSTEMS WITH EXPONENTIAL INTERACTION , 1990 .

[92]  A. Tsygvintsev,et al.  Kovalevskaya exponents of systems with exponential interaction , 2000 .

[93]  V. Ivashchuk,et al.  On Brane Solutions Related to Non-Singular Kac-Moody Algebras , 2008, 0810.0196.

[94]  V. Ivashchuk,et al.  Generalized intersecting p-brane solutions from the σ-model approach , 1997 .

[95]  Morikazu Toda,et al.  Waves in Nonlinear Lattice , 1970 .

[96]  Geometric configurations, regular subalgebras of E10 and M-theory cosmology , 2006, hep-th/0606123.

[97]  V. Ivashchuk,et al.  Triple M-brane configurations and preserved supersymmetries , 2013, 1301.2139.

[98]  C. Saçlıoğlu Dynkin diagrams for hyperbolic Kac-Moody algebras , 1989 .

[99]  V. Ivashchuk,et al.  S-Brane Solutions with Acceleration in Models with Forms and Multiple Exponential Potentials , 2004 .

[100]  TOPICAL REVIEW: Exact solutions in multidimensional gravity with antisymmetric forms , 2001, hep-th/0110274.

[101]  Sudhansu Datta Majumdar,et al.  A Class of Exact Solutions of Einstein's Field Equations , 1947 .

[102]  V. Ivashchuk,et al.  On the billiard approach in multidimensional cosmological models , 2008, 0811.2786.

[103]  V. Ivashchuk,et al.  Electric S-brane solutions corresponding to rank-2 Lie algebras: Acceleration and small variation of G , 2008, 0901.0025.

[104]  Interacting fields in general relativity theory , 1977 .

[105]  P. West,et al.  The symmetry of M-theories , 2003, hep-th/0304206.

[106]  I. Frenkel,et al.  A hyperbolic Kac-Moody algebra and the theory of Siegel modular forms of genus 2 , 1983 .

[107]  Space - like branes , 2002, hep-th/0202210.

[108]  V. Ivashchuk Black brane solutions governed by fluxbrane polynomials , 2013, 1401.0215.

[109]  Daniel Persson,et al.  Spacelike Singularities and Hidden Symmetries of Gravity , 2007, Living reviews in relativity.

[110]  V. Kac SIMPLE IRREDUCIBLE GRADED LIE ALGEBRAS OF FINITE GROWTH , 1968 .

[111]  A. Zhuk,et al.  On Wheeler-De Witt equation in multidimensional cosmology , 1989 .

[112]  Billiard representation for pseudo-Euclidean Toda-like systems of cosmological origin , 2008, 0811.0283.

[113]  O. Bogoyavlensky On perturbations of the periodic Toda lattice , 1976 .

[114]  The Reissner-Nordstrom Problem for Intersecting Electric and Magnetic p-Branes , 1997, gr-qc/9710054.