Phonon-Kink Interference in the ϕ4 Model

By means of a conventional steepest descent approach equivalent to the static limit of the ideal gas phenomenology, we derive the low temperature static properties of the 4 or double well potential model. We focus in particular on the phonon-phonon correlations and demonstrate that the thermal activation of kinks gives rise to a cross over from a pure exponential decay to damped oscillations. This is a novel feature of the 4 model demonstrating the strong coherence effects characteristic of non linear soliton bearing systems.

[1]  P. Hedegård,et al.  Static form factors for the classical easy-plane ferromagnetic chain with an in-plane magnetic field: Application to CsNiF 3 , 1984 .

[2]  P. Hedegård,et al.  Steepest descent approach to the domain-wall thermodynamics of a classical easy-plane ferromagnetic chain: Application to CsNi F 3 , 1983 .

[3]  K. Leung Path-integral approach to the statistical mechanics of solitons , 1982 .

[4]  E. Stoll,et al.  Classical statistical mechanics of the sine-Gordon andφ4chain. II. Dynamic properties , 1981 .

[5]  T. Schneider,et al.  Physics in one dimension : proceedings of an international conference Fribourg, Switzerland, August 25-29, 1980 , 1981 .

[6]  Alan R. Bishop,et al.  Statistical mechanics of one-dimensional solitary-wave-bearing scalar fields: Exact results and ideal-gas phenomenology , 1980 .

[7]  A. R. Bishop,et al.  Solitons in condensed matter: A paradigm , 1980 .

[8]  A. Bruce Structural phase transitions. II. Static critical behaviour , 1980 .

[9]  P. S. Sahni,et al.  Kink dynamics in a one-dimensional double-well field theory , 1979 .

[10]  A R Bishop,et al.  Solitons in Condensed Matter Physics , 1979 .

[11]  A. Zichichi The Whys of Subnuclear Physics , 1979 .

[12]  P. S. Sahni,et al.  Statistical-mechanical treatment of kinks in a one-dimensional model for displacive phase transitions , 1978 .

[13]  Alan R. Bishop,et al.  Solitons and Condensed Matter Physics , 1978 .

[14]  A. Polyakov Quark confinement and topology of gauge theories , 1977 .

[15]  R. Rajaraman Some non-perturbative semi-classical methods in quantum field theory (a pedagogical review)☆ , 1975 .

[16]  J. R. Schrieffer,et al.  Dynamics and statistical mechanics of a one-dimensional model Hamiltonian for structural phase transitions , 1974 .

[17]  James S. Langer,et al.  Theory of the condensation point , 1967 .