Optimization of an air-filled Beta type Stirling refrigerator

Abstract The Stirling machine has many successful applications mainly thanks to its high efficiency, fast cool-down, small size, light weight, low power consumption and high reliability (heating and cooling). A Beta type Stirling refrigerator is studied experimentally and numerically. The mathematical model takes into account complex phenomena related to compressible fluid mechanics, thermodynamics and heat transfer losses. A special attention is paid to the effect of geometric parameters such as dead and swept volumes respectively in compression and expansion spaces. Regenerator length, diameter and porosity are also discussed and optimal parameters are proposed. The effect of speed on the cold end temperature and refrigerator's performances is also investigated. Net cooling capacity, input power and COP were estimated at different conditions. Results allow understanding the physical processes occurring in the refrigerator and for predicting its performance.

[1]  Iskander Tlili,et al.  Finite time thermodynamic evaluation of endoreversible Stirling heat engine at maximum power conditions , 2012 .

[2]  Jan Sauer,et al.  Numerical model for Stirling cycle machines including a differential simulation of the appendix gap , 2017 .

[3]  Xingya Chen,et al.  Numerical analysis on pressure drop and heat transfer performance of mesh regenerators used in cryocoolers , 2009 .

[4]  Junjie Wang,et al.  Numerical study of a one-stage VM cryocooler operating below 10K , 2016 .

[5]  Masafumi Nogawa,et al.  Pulse tube stirling machine with warm gas-driven displacer , 2010 .

[6]  Weiwei Yang,et al.  Numerical analysis on performance and contaminated failures of the miniature split Stirling cryocooler , 2014 .

[7]  Chih Wu Maximum obtainable specific cooling load of a refrigerator , 1995 .

[8]  Haizheng Dang,et al.  Dynamic and thermodynamic characteristics of the moving-coil linear compressor for the pulse tube cryocooler. Part A: Theoretical analyses and modeling , 2016 .

[9]  Halit Karabulut,et al.  Thermodynamic analysis of the V-type Stirling-cycle refrigerator , 2005 .

[10]  Hua Zhang,et al.  Study on the phase shift characteristic of the pneumatic Stirling cryocooler , 2009 .

[11]  O. E. Ataer,et al.  Performance of V-type Stirling-cycle refrigerator for different working fluids , 2010 .

[12]  Toshio Otaka,et al.  Study of performance characteristics of a small Stirling refrigerator , 2002 .

[13]  S. C. Kaushik,et al.  Parametric study of irreversible stirling and ericsson cryogenic refrigeration cycles , 2002 .

[14]  S. C. Kaushik,et al.  Performance evaluation of irreversible stirling and ericsson heat pump cycles , 2002 .

[15]  A. London,et al.  Compact heat exchangers , 1960 .

[16]  Cun-quan Zhang,et al.  Experimental study of a gas clearance phase regulation mechanism for a pneumatically-driven split-Stirling-cycle cryocooler , 2015 .

[17]  Arsalan Razani,et al.  A model for exergy analysis and thermodynamic bounds of Stirling refrigerators , 2010 .

[18]  G. Walker,et al.  Microcomputer simulation of Stirling cryocoolers , 1989 .

[19]  Pascal Stouffs Dimensionnement optimal des volumes de compression et de détente des moteurs Stirling , 2000 .

[20]  Shu Pengcheng,et al.  Performance of a prototype Stirling domestic refrigerator , 2009 .

[21]  Sassi Ben Nasrallah,et al.  Numerical characterization of a γ-Stirling engine considering losses and interaction between functioning parameters , 2015 .

[22]  Luwei Yang,et al.  High-power Stirling-type pulse tube cryocooler: Observation and reduction of regenerator temperature-inhomogeneities , 2007 .

[23]  Chao Yang,et al.  Analysis of pulsating convection from two heat sources mounted with porous blocks , 2008 .

[24]  Lawrence S. Chen Cooling load versus COP characteristics for an irreversible air refrigeration cycle , 1998 .

[25]  S. M. Ghiaasiaan,et al.  Anisotropic steady-flow hydrodynamic parameters of microporous media applied to pulse tube and Stirling cryocooler regenerators , 2008 .

[26]  L. Berrin Erbay,et al.  Overall performance of the duplex Stirling refrigerator , 2017 .

[27]  Iskander Tlili,et al.  Analysis and design consideration of mean temperature differential Stirling engine for solar application , 2008 .

[28]  W. R. Martini,et al.  Stirling engine design manual , 1978 .

[29]  Kai Wang,et al.  Modelling of pulse tube refrigerators with inertance tube and mass-spring feedback mechanism , 2016 .

[30]  S. C. Kaushik,et al.  Thermoeconomic optimization of an irreversible Stirling cryogenic refrigerator cycle , 2004 .

[31]  Lei Zhang,et al.  Theoretical and experimental investigations on the optimal match between compressor and cold finger of the Stirling-type pulse tube cryocooler , 2016 .