Quantum characterization of bipartite Gaussian states

Gaussian bipartite states are basic tools for the realization of quantum information protocols with continuous variables. Their complete characterization is obtained by the reconstruction of the corresponding covariance matrix. Here we describe in detail and experimentally demonstrate a robust and reliable method to fully characterize bipartite optical Gaussian states by means of a single homodyne detector. We have successfully applied our method to the bipartite states generated by a sub-threshold type-II optical parametric oscillator which produces a pair of thermal cross-polarized entangled cw frequency degenerate beams. The method provides a reliable reconstruction of the covariance matrix and allows us to retrieve all the physical information about the state under investigation. These include observable quantities, such as energy and squeezing, as well as nonobservable ones such as purity, entropy, and entanglement. Our procedure also includes advanced tests for the Gaussianity of the state and, overall, represents a powerful tool to study the bipartite Gaussian state from the generation stage to the detection one.

[1]  N. Treps,et al.  An experimental investigation of criteria for continuous variable entanglement , 2003, Postconference Digest Quantum Electronics and Laser Science, 2003. QELS..

[2]  On the parametric approximation in quantum optics , 1999, quant-ph/9902013.

[3]  S. Olivares,et al.  Continuous-variable-entanglement dynamics in structured reservoirs , 2009, 0910.2342.

[4]  Timothy C. Ralph,et al.  Quantum information with continuous variables , 2000, Conference Digest. 2000 International Quantum Electronics Conference (Cat. No.00TH8504).

[5]  Reid,et al.  Correlations in nondegenerate parametric oscillation. II. Below threshold results. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[6]  Reid,et al.  Quantum correlations of phase in nondegenerate parametric oscillation. , 1988, Physical review letters.

[7]  M. G. A. Paris,et al.  Purity of Gaussian states: Measurement schemes and time evolution in noisy channels , 2003 .

[8]  Simón Peres-horodecki separability criterion for continuous variable systems , 1999, Physical review letters.

[9]  S. Olivares,et al.  Gaussian States in Quantum Information , 2005 .

[10]  Alessio Serafini,et al.  LETTER TO THE EDITOR: Symplectic invariants, entropic measures and correlations of Gaussian states , 2003, quant-ph/0307073.

[11]  F. Illuminati,et al.  Minimum decoherence cat-like states in Gaussian noisy channels , 2003, quant-ph/0310005.

[12]  Jack K. Wolf,et al.  Noiseless coding of correlated information sources , 1973, IEEE Trans. Inf. Theory.

[13]  Stefano Mancini,et al.  Entangling macroscopic oscillators exploiting radiation pressure. , 2002, Physical review letters.

[14]  C. Fabre,et al.  Entanglement of two-mode Gaussian states: characterization and experimental production and manipulation , 2005, quant-ph/0507067.

[15]  HOMODYNE CHARACTERIZATION OF CONTINUOUS VARIABLE BIPARTITE STATES , 2007 .

[16]  Andreas Winter,et al.  Partial quantum information , 2005, Nature.

[17]  C. Fabre,et al.  Criteria of quantum correlation in the measurement of continuous variables in optics , 2004, quant-ph/0407214.

[18]  A. Chiummo,et al.  Tomographic characterization of OPO sources close to threshold. , 2005, Optics express.

[19]  Cirac,et al.  Inseparability criterion for continuous variable systems , 1999, Physical review letters.

[20]  C. Adami,et al.  Quantum extension of conditional probability , 1999 .

[21]  Entanglement and purity of two-mode Gaussian states in noisy channels (10 pages) , 2003, quant-ph/0310087.

[22]  Matteo G. A. Paris,et al.  Quorum of observables for universal quantum estimation , 2001 .

[23]  Experimental characterization of continuous-variable entanglement , 2003, quant-ph/0309013.

[24]  Characterization of bipartite states using a single homodyne detector , 2005, quant-ph/0509180.

[25]  S. Solimeno,et al.  Fine tuning of a triply resonant OPO for generating frequency degenerate CV entangled beams at low pump powers , 2008 .

[26]  G. D’Ariano,et al.  Quantum Tomography , 2003, quant-ph/0302028.

[27]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[28]  F. Illuminati,et al.  Multiphoton quantum optics and quantum state engineering , 2006, quant-ph/0701050.

[29]  C. Xie,et al.  Quantum variances and squeezing of output field from NOPA , 1999 .

[30]  Jaromír Fiurásek,et al.  Experimental demonstration of continuous variable purification of squeezed States. , 2006, Physical review letters.

[31]  G. Agarwal Entropy, the Wigner Distribution Function, and the Approach to Equilibrium of a System of Coupled Harmonic Oscillators , 1971 .

[32]  Seth Lloyd,et al.  Correlation matrices of two-mode bosonic systems , 2009, 0902.1502.

[33]  Time-resolved homodyne characterization of individual quadrature-entangled pulses , 2004, quant-ph/0409211.

[34]  Dirk-Gunnar Welsch,et al.  II Homodyne Detection and Quantum-State Reconstruction , 1999 .

[35]  M. Paris,et al.  Non-Gaussian states produced by close-to-threshold optical parametric oscillators: role of classical and quantum fluctuations , 2009, 0907.3825.

[36]  Marco G. Genoni,et al.  Quantifying the non-Gaussian character of a quantum state by quantum relative entropy , 2007, 0805.1645.

[37]  A. Lvovsky,et al.  Continuous-variable optical quantum-state tomography , 2009 .

[38]  W. Vogel,et al.  Homodyne Detection and Quantum State Reconstruction , 2009, 0907.1353.

[39]  Jaromir Fiurasek,et al.  Preparation of distilled and purified continuous-variable entangled states , 2008, 0812.0738.

[40]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[41]  C. Xie,et al.  Experimental Realization of a Quantum Measurement for Intensity Difference Fluctuation Using a Beam Splitter , 1999 .

[42]  S. Olivares,et al.  Full characterization of Gaussian bipartite entangled states by a single homodyne detector. , 2008, Physical review letters.

[43]  Ou,et al.  Realization of the Einstein-Podolsky-Rosen paradox for continuous variables. , 1992, Physical review letters.

[44]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[45]  Entanglement oscillations in non-Markovian quantum channels , 2007, quant-ph/0702055.

[46]  S. Shapiro,et al.  An Analysis of Variance Test for Normality (Complete Samples) , 1965 .

[47]  J. Řeháček,et al.  Effective method to estimate multidimensional Gaussian states , 2009, 0902.0823.

[48]  J. Eisert,et al.  Introduction to the basics of entanglement theory in continuous-variable systems , 2003, quant-ph/0312071.