Directed evolution of enantioselective hybrid catalysts: a novel concept in asymmetric catalysis
暂无分享,去创建一个
Manfred T. Reetz | Frank Hollmann | Andreas Pletsch | Martin Rentzsch | M. Reetz | F. Hollmann | Andreas Taglieber | J. Peyralans | Matthias Maywald | Peter Maiwald | Jérôme J.-P. Peyralans | Andrea Maichele | Yu Fu | Ning Jiao | Régis Mondière | Andreas Taglieber | Ning Jiao | A. Maichele | M. Rentzsch | A. Pletsch | Matthias Maywald | Peter Maiwald | R. Mondiere | Yu Fu
[1] A. Heck,et al. Lipase active-site-directed anchoring of organometallics: metallopincer/protein hybrids. , 2005, Chemistry.
[2] B. Feringa,et al. Merging homogeneous catalysis with biocatalysis; papain as hydrogenation catalyst. , 2005, Chemical communications.
[3] M. Weiner,et al. A simple and rapid method for the selection of oligodeoxynucleotide-directed mutants. , 1988, Gene.
[4] Jan B. F. N. Engberts,et al. A chiral Lewis-acid-catalyzed Diels-Alder reaction. Water- enhanced enantioselectivity , 1998 .
[5] M. Reetz,et al. The influence of mixtures of monodentate achiral ligands on the regioselectivity of transition-metal-catalyzed hydroformylation. , 2005, Angewandte Chemie.
[6] W. Knowles. Asymmetrische Hydrierungen (Nobel-Vortrag) Copyright© The Nobel Foundation 2002. – Wir danken der Nobel-Stiftung, Stockholm, für die Genehmigung zum Druck einer deutschen Fassung des Vortrags. , 2002 .
[7] Frances H. Arnold,et al. Directed enzyme evolution : screening and selection methods , 2003 .
[8] F. C. Hartman,et al. Restoration of activity to catalytically deficient mutants of ribulosebisphosphate carboxylase/oxygenase by aminoethylation. , 1988, The Journal of biological chemistry.
[9] G. W. Parshall,et al. Homogeneous Catalysis: The Applications and Chemistry of Catalysis by Soluble Transition Metal Complexes , 1980 .
[10] P. Schultz,et al. The interplay between chemistry and biology in the design of enzymatic catalysts. , 1988, Science.
[11] Andreas Vogel,et al. Expanding the substrate scope of enzymes: combining mutations obtained by CASTing. , 2006, Chemistry.
[12] Sau-Ching Wu,et al. Engineering of a Bacillus subtilis Strain with Adjustable Levels of Intracellular Biotin for Secretory Production of Functional Streptavidin , 2002, Applied and Environmental Microbiology.
[13] M. T. Reetz,et al. Der Einfluß von Mischungen achiraler einzähniger Liganden auf die Regioselektivität der übergangsmetallkatalysierten Hydroformylierung , 2005 .
[14] Andreas Vogel,et al. Expanding the range of substrate acceptance of enzymes: combinatorial active-site saturation test. , 2005, Angewandte Chemie.
[15] J S Valentine,et al. Engineering metal-binding sites in proteins. , 1997, Current opinion in structural biology.
[16] M. T. Reetz,et al. Ein neuartiges Prinzip in der kombinatorischen asymmetrischen Übergangsmetall-Katalyse: Mischungen von chiralen einzähnigen P-Liganden† , 2003 .
[17] Chi-Huey Wong,et al. Enzymes for chemical synthesis , 2001, Nature.
[18] A. Chan,et al. Catalytic hydrogenation of itaconic acid in a biotinylated Pyrphos–rhodium(I) system in a protein cavity , 1999 .
[19] M. Reetz,et al. Combinatorial approach to the asymmetric hydrogenation of β-acylamino acrylates: use of mixtures of chiral monodentate P-ligands , 2004 .
[20] Manfred T Reetz,et al. Directed evolution of enantioselective enzymes: iterative cycles of CASTing for probing protein-sequence space. , 2006, Angewandte Chemie.
[21] M. T. Reetz,et al. Erzeugung enantioselektiver Biokatalysatoren für die Organische Chemie durch In‐vitro‐Evolution , 1997 .
[22] A. Kiener,et al. Industrial biocatalysis today and tomorrow , 2001, Nature.
[23] J. Wendoloski,et al. Structural origins of high-affinity biotin binding to streptavidin. , 1989, Science.
[24] Donald Hilvert,et al. Genetische Selektion – eine Strategie zur Untersuchung und Herstellung von Enzymen , 2001 .
[25] E. Jacobsen,et al. Privileged Chiral Catalysts , 2003, Science.
[26] D. MacMillan,et al. Modern strategies in organic catalysis: The advent and development of iminium activation , 2006 .
[27] A. Minnaard,et al. Achiral Ligands Dramatically Enhance Rate and Enantioselectivity in the Rh/Phosphoramidite‐Catalyzed Hydrogenation of α,β‐Disubstituted Unsaturated Acids , 2005 .
[28] E. Jacobsen,et al. Comprehensive Asymmetric Catalysis I–III , 1999 .
[29] M. T. Reetz,et al. Mischungen konfigurationsstabiler und fluxionaler atropisomerer einzähniger P-Liganden in der asymmetrischen Rh-katalysierten Olefin-Hydrirung , 2005 .
[30] Kurt Faber,et al. Biotransformations in Organic Chemistry , 1992 .
[31] Colin Eaborn,et al. Comprehensive Coordination Chemistry , 1988 .
[32] M. Reetz,et al. A new principle in combinatorial asymmetric transition-metal catalysis: mixtures of chiral monodentate P ligands. , 2003, Angewandte Chemie.
[33] Manfred T Reetz,et al. New methods for the high-throughput screening of enantioselective catalysts and biocatalysts. , 2002, Angewandte Chemie.
[34] Manfred T Reetz,et al. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes , 2007, Nature Protocols.
[35] Manfred T. Reetz,et al. Directed evolution of selective enzymes and hybrid catalysts , 2002 .
[36] Ryoji Noyori Prof.. Asymmetric Catalysis: Science and Opportunities (Nobel Lecture) , 2002 .
[37] K. Ding,et al. Combinatorial chemistry approach to chiral catalyst engineering and screening: rational design and serendipity. , 2004, Chemistry.
[38] Eishun Tsuchida,et al. BMC Structural Biology BioMed Central , 2003 .
[39] Jean-Louis Reymond,et al. Enzyme assays for high-throughput screening. , 2004, Current opinion in biotechnology.
[40] Rohit Sharma,et al. Directed Evolution: An Approach to Engineer Enzymes , 2006, Critical reviews in biotechnology.
[41] M. Reetz,et al. Mixtures of chiral monodentate phosphites, phosphonites and phosphines as ligands in Rh-catalyzed hydrogenation of N-acyl enamines: extension of the combinatorial approach , 2004 .
[42] E. Joly,et al. An improved PCR-mutagenesis strategy for two-site mutagenesis or sequence swapping between related genes. , 1998, Nucleic acids research.
[43] R. Noyori. Asymmetrische Katalyse: Kenntnisstand und Perspektiven (Nobel-Vortrag) Copyright© The Nobel Foundation 2002. – Wir danken der Nobel-Stiftung, Stockholm, für die Genehmigung zum Druck einer deutschen Fassung des Vortrags. , 2002 .
[44] Manfred T Reetz,et al. Controlling the enantioselectivity of enzymes by directed evolution: practical and theoretical ramifications. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[45] S. Otto,et al. A systematic study of ligand effects on a Lewis-acid-catalyzed Diels-Alder reaction in water. Water-enhanced enantioselectivity , 1999 .
[46] T. Ward,et al. Artificial metalloenzymes: proteins as hosts for enantioselective catalysis. , 2005, Chemical Society reviews.
[47] Eric N. Jacobsen,et al. ENTDECKUNG NEUER KATALYSATOREN FUR DIE ALKENEPOXIDIERUNG DURCH METALLBINDENDE KOMBINATORISCHE BIBLIOTHEKEN , 1999 .
[48] I. Hamachi,et al. Chemical Modification of the Structures and Functions of Proteins by the Cofactor Reconstitution Method , 1999 .
[49] Huimin Zhao,et al. Recent advances in biocatalysis by directed enzyme evolution. , 2006, Combinatorial chemistry & high throughput screening.
[50] Gerard Roelfes,et al. DNA-based asymmetric catalysis. , 2005, Angewandte Chemie.
[51] M. T. Reetz,et al. Kombinatorische und evolutionsgesteuerte Methoden zur Bildung enantioselektiver Katalysatoren , 2001 .
[52] E. Kaiser. Katalytische Aktivität von Enzymen mit modifiziertem aktivem Zentrum , 1988 .
[53] Eric N. Jacobsen,et al. Comprehensive asymmetric catalysis , 1999 .
[54] M. Reetz,et al. Binol-derived monodentate phosphites and phosphoramidites with phosphorus stereogenic centers: novel ligands for transition-metal catalysis. , 2005, Angewandte Chemie.
[55] Yi Lu,et al. Engineering novel metalloproteins: design of metal-binding sites into native protein scaffolds. , 2001, Chemical reviews.
[56] Keith A. Powell,et al. Directed Evolution and Biocatalysis. , 2001, Angewandte Chemie.
[57] K. Sharpless,et al. Auf der Suche nach neuer Reaktivität (Nobel-Vortrag) , 2002 .
[58] D. Hilvert,et al. Semisynthetic enzymes: design of flavin-dependent oxidoreductases. , 1987, Biotechnology & genetic engineering reviews.
[59] M. Reetz. Strategies for the development of enantioselective catalysts , 1999 .
[60] E. Kaiser. Catalytic Activity of Enzymes Altered at Their Active Sites , 1988 .
[61] J. D. de Vries,et al. The combinatorial approach to asymmetric hydrogenation: phosphoramidite libraries, ruthenacycles, and artificial enzymes. , 2006, Chemistry.
[62] K. Sharpless,et al. Searching for new reactivity (Nobel lecture). , 2002, Angewandte Chemie.
[63] R. Kazlauskas,et al. Molecular modeling and biocatalysis: explanations, predictions, limitations, and opportunities. , 2000, Current opinion in chemical biology.
[64] Manfred T. Reetz,et al. Towards the directed evolution of hybrid catalysts , 2002 .
[65] Thomas J. Meyer,et al. Comprehensive Coordination Chemistry II , 2004 .
[66] Donald Hilvert,et al. Investigating and Engineering Enzymes by Genetic Selection. , 2001, Angewandte Chemie.
[67] Manfred T. Reetz,et al. Directed Evolution of an Enantioselective Enzyme through Combinatorial Multiple-Cassette Mutagenesis. , 2001, Angewandte Chemie.
[68] W. Knowles. Asymmetric hydrogenations (Nobel lecture). , 2002, Angewandte Chemie.
[69] I. G. Kamphuis,et al. Structure of papain refined at 1.65 A resolution. , 1984, Journal of molecular biology.
[70] D. Rich,et al. Alkylating derivatives of amino acids and peptides. Synthesis of N-maleoylamino acids, [1-(N-maleoylglycyl)cysteinyl]oxytocin, and [1-(N-maleoyl-11-aminoundecanoyl)cysteinyl]oxytocin. Effects on vasopressin-stimulated water loss from isolated toad bladder , 1975 .
[71] P. Barker,et al. Designing redox metalloproteins from bottom-up and top-down perspectives. , 2003, Current opinion in structural biology.
[72] Andrea Zocchi,et al. Artificial metalloenzymes for enantioselective catalysis based on biotin-avidin. , 2003, Journal of the American Chemical Society.
[73] Riedl,et al. Combinatorial de novo synthesis of catalysts: how much of a hit-structure is needed for activity? , 2000, Journal of combinatorial chemistry.
[74] C. Gennari,et al. Combinatorial libraries of chiral ligands for enantioselective catalysis. , 2003, Chemical reviews.
[75] W. Herrmann,et al. Aqueous-Phase Organometallic Catalysis: Concepts and Applications , 2005 .
[76] Marc Ostermeier,et al. Mathematical expressions useful in the construction, description and evaluation of protein libraries. , 2005, Biomolecular engineering.
[77] M. Reetz. Combinatorial and Evolution-Based Methods in the Creation of Enantioselective Catalysts. , 2001, Angewandte Chemie.
[78] M. Reetz,et al. Mixtures of configurationally stable and fluxional atropisomeric monodentate P ligands in asymmetric Rh-catalyzed olefin hydrogenation. , 2005, Angewandte Chemie.
[79] M. Reetz,et al. Extending the concept of mixtures of chiral monodentate P-ligands in asymmetric Rh-catalyzed olefin-hydrogenation: Use of oxazaphospholidines , 2006 .
[80] M. T. Reetz,et al. Gerichtete Evolution eines enantioselektiven Enzyms durch kombinatorische multiple Kassetten‐Mutagenese , 2001 .
[81] Yi Lu,et al. Design and engineering of metalloproteins containing unnatural amino acids or non-native metal-containing cofactors. , 2005, Current opinion in chemical biology.
[82] K. A. Powell,et al. Gerichtete Evolution und Biokatalyse , 2001 .
[83] C. Craik,et al. Engineering enzyme specificity. , 1998, Current opinion in chemical biology.
[84] Walter Thiel,et al. Learning from Directed Evolution: Further Lessons from Theoretical Investigations into Cooperative Mutations in Lipase Enantioselectivity , 2007, Chembiochem : a European journal of chemical biology.
[85] Andreas Schwienhorst,et al. Evolutionary methods in biotechnology : clever tricks for directed evolution , 2004 .
[86] J. B. Jones,et al. Expanded structural and stereospecificity in peptide synthesis with chemically modified mutants of subtilisin , 1999 .
[87] B. List. Proline-catalyzed asymmetric reactions , 2002 .
[88] S. Bräse,et al. Combinatorial Methods for the Discovery and Optimisation of Homogeneous Catalysts , 2004 .
[89] M. Distefano,et al. Generation of new enzymes via covalent modification of existing proteins. , 2001, Chemical reviews.
[90] T. Ward. Artificial metalloenzymes for enantioselective catalysis based on the noncovalent incorporation of organometallic moieties in a host protein. , 2005, Chemistry.
[91] Sau-Ching Wu,et al. Secretory production and purification of functional full-length streptavidin from Bacillus subtilis. , 2002, Protein expression and purification.
[92] Detlev Belder,et al. Enantioselective catalysis and analysis on a chip. , 2006, Angewandte Chemie.
[93] Eric N. Jacobsen,et al. Polymer-Supported Chiral Co(Salen) Complexes: Synthetic Applications and Mechanistic Investigations in the Hydrolytic Kinetic Resolution of Terminal Epoxides , 1999 .
[94] K. Janda,et al. A cofactor approach to copper-dependent catalytic antibodies , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[95] K. Kobayashi,et al. Physicochemical and immunochemical properties of recombinant human serum albumin from Pichia pastoris. , 1998, Analytical biochemistry.
[96] A. Mahammed,et al. Albumin-conjugated corrole metal complexes: extremely simple yet very efficient biomimetic oxidation systems. , 2005, Journal of the American Chemical Society.
[97] W. Thiel,et al. Learning from Directed Evolution: Theoretical Investigations into Cooperative Mutations in Lipase Enantioselectivity , 2004, Chembiochem : a European journal of chemical biology.
[98] B. G. Davis. Chemical modification of biocatalysts. , 2003, Current opinion in biotechnology.
[99] M. Ratner,et al. Synthesis and electrochemical characterization of a transition-metal-modified ligand-receptor pair. , 2005, Journal of the American Chemical Society.
[100] Andreas Vogel,et al. Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. , 2006, Angewandte Chemie.
[101] Manfred T. Reetz,et al. Creation of Enantioselective Biocatalysts for Organic Chemistry by In Vitro Evolution , 1997 .
[102] F. Studier,et al. Protein production by auto-induction in high density shaking cultures. , 2005, Protein expression and purification.
[103] R D Schmid,et al. Rational evolution of a medium chain-specific cytochrome P-450 BM-3 variant. , 2001, Biochimica et biophysica acta.
[104] M. Wilchek,et al. Isolation and properties of streptavidin. , 1990, Methods in enzymology.
[105] Karlheinz Drauz,et al. Enzyme Catalysis in Organic Synthesis: A Comprehensive Handbook: Vol. 1 J. Am. Chem. Soc. 1996, 118, 11340 , 1997 .
[106] A. Sidoli,et al. Production of a soluble and functional recombinant streptavidin in Escherichia coli. , 1998, Protein expression and purification.
[107] L. Polgár,et al. A New Enzyme Containing a Synthetically Formed Active Site. Thiol-Subtilisin1 , 1966 .
[108] L. Thompson,et al. Construction and expression of a synthetic streptavidin-encoding gene in Escherichia coli. , 1993, Gene.
[109] Johannes G. de Vries,et al. The Power of High-Throughput Experimentation in Homogeneous Catalysis Research for Fine Chemicals , 2003 .
[110] A. Ménez,et al. Tailoring new enzyme functions by rational redesign. , 2000, Current opinion in structural biology.
[111] H. Gray,et al. Amphiphilic corroles bind tightly to human serum albumin. , 2004, Bioconjugate chemistry.
[112] M. T. Reetz. Neue Methoden für das Hochdurchsatz-Screening von enantioselektiven Katalysatoren und Biokatalysatoren , 2002 .
[113] C. Cantor,et al. Expression of a cloned streptavidin gene in Escherichia coli. , 1990, Proceedings of the National Academy of Sciences of the United States of America.
[114] M. Francis,et al. Discovery of Novel Catalysts for Alkene Epoxidation from Metal-Binding Combinatorial Libraries. , 1999, Angewandte Chemie.
[115] T. Peters,et al. All About Albumin: Biochemistry, Genetics, and Medical Applications , 1995 .
[116] Ryoji Noyori,et al. Asymmetric catalysis: science and opportunities (Nobel lecture). , 2002, Angewandte Chemie.
[117] G. Whitesides,et al. Synthesis of Functional Chelating Diphosphines Containing the Bis[2-(diphenylphosphino)ethyl]amino Moiety and the Use of These Materials in the Preparation of Water-Soluble Diphosphine Complexes of Transition Metals , 1981 .
[118] Kai Johnsson,et al. Directed Molecular Evolution of Proteins or How to Improve Enzymes for Biocatalysis , 2002 .
[119] George M. Whitesides,et al. Conversion of a protein to a homogeneous asymmetric hydrogenation catalyst by site-specific modification with a diphosphinerhodium(I) moiety , 1978 .
[120] Wayne M Patrick,et al. Strategies and computational tools for improving randomized protein libraries. , 2005, Biomolecular engineering.
[121] M. Reetz,et al. Mixtures of monodentate P-ligands as a means to control the diastereoselectivity in Rh-catalyzed hydrogenation of chiral alkenes , 2005, Beilstein journal of organic chemistry.
[122] Manfred T Reetz,et al. Directed evolution of hybrid enzymes: Evolving enantioselectivity of an achiral Rh-complex anchored to a protein. , 2006, Chemical communications.
[123] A. Klibanov. Improving enzymes by using them in organic solvents , 2001, Nature.