Directed evolution of enantioselective hybrid catalysts: a novel concept in asymmetric catalysis

The concept of directed evolution of enantioselective hybrid catalysts was proposed in 2001/2002 and implemented experimentally for the first time in a proof-of-concept study in 2006. The idea is based on directed evolution, which comprises repeating cycles of random gene mutagenesis/expression/screening in a Darwinistic sense for the purpose of improving the catalytic profile of enzymes. In the case of hybrid catalysts, mutagenesis/expression of a protein is first performed with formation of a library of mutants, which are then modified chemically en masse with the introduction of an appropriate achiral ligand system harboring a transition metal. Screening these mutant hybrid catalysts in a given transition metal-catalyzed reaction then leads to an improved catalyst, so that the corresponding gene can be used to start another evolutionary cycle. This process can be repeated as often as needed until the desired catalytic profile has been reached, e.g., enhanced enantioselectivity.

[1]  A. Heck,et al.  Lipase active-site-directed anchoring of organometallics: metallopincer/protein hybrids. , 2005, Chemistry.

[2]  B. Feringa,et al.  Merging homogeneous catalysis with biocatalysis; papain as hydrogenation catalyst. , 2005, Chemical communications.

[3]  M. Weiner,et al.  A simple and rapid method for the selection of oligodeoxynucleotide-directed mutants. , 1988, Gene.

[4]  Jan B. F. N. Engberts,et al.  A chiral Lewis-acid-catalyzed Diels-Alder reaction. Water- enhanced enantioselectivity , 1998 .

[5]  M. Reetz,et al.  The influence of mixtures of monodentate achiral ligands on the regioselectivity of transition-metal-catalyzed hydroformylation. , 2005, Angewandte Chemie.

[6]  W. Knowles Asymmetrische Hydrierungen (Nobel-Vortrag) Copyright© The Nobel Foundation 2002. – Wir danken der Nobel-Stiftung, Stockholm, für die Genehmigung zum Druck einer deutschen Fassung des Vortrags. , 2002 .

[7]  Frances H. Arnold,et al.  Directed enzyme evolution : screening and selection methods , 2003 .

[8]  F. C. Hartman,et al.  Restoration of activity to catalytically deficient mutants of ribulosebisphosphate carboxylase/oxygenase by aminoethylation. , 1988, The Journal of biological chemistry.

[9]  G. W. Parshall,et al.  Homogeneous Catalysis: The Applications and Chemistry of Catalysis by Soluble Transition Metal Complexes , 1980 .

[10]  P. Schultz,et al.  The interplay between chemistry and biology in the design of enzymatic catalysts. , 1988, Science.

[11]  Andreas Vogel,et al.  Expanding the substrate scope of enzymes: combining mutations obtained by CASTing. , 2006, Chemistry.

[12]  Sau-Ching Wu,et al.  Engineering of a Bacillus subtilis Strain with Adjustable Levels of Intracellular Biotin for Secretory Production of Functional Streptavidin , 2002, Applied and Environmental Microbiology.

[13]  M. T. Reetz,et al.  Der Einfluß von Mischungen achiraler einzähniger Liganden auf die Regioselektivität der übergangsmetallkatalysierten Hydroformylierung , 2005 .

[14]  Andreas Vogel,et al.  Expanding the range of substrate acceptance of enzymes: combinatorial active-site saturation test. , 2005, Angewandte Chemie.

[15]  J S Valentine,et al.  Engineering metal-binding sites in proteins. , 1997, Current opinion in structural biology.

[16]  M. T. Reetz,et al.  Ein neuartiges Prinzip in der kombinatorischen asymmetrischen Übergangsmetall-Katalyse: Mischungen von chiralen einzähnigen P-Liganden† , 2003 .

[17]  Chi-Huey Wong,et al.  Enzymes for chemical synthesis , 2001, Nature.

[18]  A. Chan,et al.  Catalytic hydrogenation of itaconic acid in a biotinylated Pyrphos–rhodium(I) system in a protein cavity , 1999 .

[19]  M. Reetz,et al.  Combinatorial approach to the asymmetric hydrogenation of β-acylamino acrylates: use of mixtures of chiral monodentate P-ligands , 2004 .

[20]  Manfred T Reetz,et al.  Directed evolution of enantioselective enzymes: iterative cycles of CASTing for probing protein-sequence space. , 2006, Angewandte Chemie.

[21]  M. T. Reetz,et al.  Erzeugung enantioselektiver Biokatalysatoren für die Organische Chemie durch In‐vitro‐Evolution , 1997 .

[22]  A. Kiener,et al.  Industrial biocatalysis today and tomorrow , 2001, Nature.

[23]  J. Wendoloski,et al.  Structural origins of high-affinity biotin binding to streptavidin. , 1989, Science.

[24]  Donald Hilvert,et al.  Genetische Selektion – eine Strategie zur Untersuchung und Herstellung von Enzymen , 2001 .

[25]  E. Jacobsen,et al.  Privileged Chiral Catalysts , 2003, Science.

[26]  D. MacMillan,et al.  Modern strategies in organic catalysis: The advent and development of iminium activation , 2006 .

[27]  A. Minnaard,et al.  Achiral Ligands Dramatically Enhance Rate and Enantioselectivity in the Rh/Phosphoramidite‐Catalyzed Hydrogenation of α,β‐Disubstituted Unsaturated Acids , 2005 .

[28]  E. Jacobsen,et al.  Comprehensive Asymmetric Catalysis I–III , 1999 .

[29]  M. T. Reetz,et al.  Mischungen konfigurationsstabiler und fluxionaler atropisomerer einzähniger P-Liganden in der asymmetrischen Rh-katalysierten Olefin-Hydrirung , 2005 .

[30]  Kurt Faber,et al.  Biotransformations in Organic Chemistry , 1992 .

[31]  Colin Eaborn,et al.  Comprehensive Coordination Chemistry , 1988 .

[32]  M. Reetz,et al.  A new principle in combinatorial asymmetric transition-metal catalysis: mixtures of chiral monodentate P ligands. , 2003, Angewandte Chemie.

[33]  Manfred T Reetz,et al.  New methods for the high-throughput screening of enantioselective catalysts and biocatalysts. , 2002, Angewandte Chemie.

[34]  Manfred T Reetz,et al.  Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes , 2007, Nature Protocols.

[35]  Manfred T. Reetz,et al.  Directed evolution of selective enzymes and hybrid catalysts , 2002 .

[36]  Ryoji Noyori Prof. Asymmetric Catalysis: Science and Opportunities (Nobel Lecture) , 2002 .

[37]  K. Ding,et al.  Combinatorial chemistry approach to chiral catalyst engineering and screening: rational design and serendipity. , 2004, Chemistry.

[38]  Eishun Tsuchida,et al.  BMC Structural Biology BioMed Central , 2003 .

[39]  Jean-Louis Reymond,et al.  Enzyme assays for high-throughput screening. , 2004, Current opinion in biotechnology.

[40]  Rohit Sharma,et al.  Directed Evolution: An Approach to Engineer Enzymes , 2006, Critical reviews in biotechnology.

[41]  M. Reetz,et al.  Mixtures of chiral monodentate phosphites, phosphonites and phosphines as ligands in Rh-catalyzed hydrogenation of N-acyl enamines: extension of the combinatorial approach , 2004 .

[42]  E. Joly,et al.  An improved PCR-mutagenesis strategy for two-site mutagenesis or sequence swapping between related genes. , 1998, Nucleic acids research.

[43]  R. Noyori Asymmetrische Katalyse: Kenntnisstand und Perspektiven (Nobel-Vortrag) Copyright© The Nobel Foundation 2002. – Wir danken der Nobel-Stiftung, Stockholm, für die Genehmigung zum Druck einer deutschen Fassung des Vortrags. , 2002 .

[44]  Manfred T Reetz,et al.  Controlling the enantioselectivity of enzymes by directed evolution: practical and theoretical ramifications. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[45]  S. Otto,et al.  A systematic study of ligand effects on a Lewis-acid-catalyzed Diels-Alder reaction in water. Water-enhanced enantioselectivity , 1999 .

[46]  T. Ward,et al.  Artificial metalloenzymes: proteins as hosts for enantioselective catalysis. , 2005, Chemical Society reviews.

[47]  Eric N. Jacobsen,et al.  ENTDECKUNG NEUER KATALYSATOREN FUR DIE ALKENEPOXIDIERUNG DURCH METALLBINDENDE KOMBINATORISCHE BIBLIOTHEKEN , 1999 .

[48]  I. Hamachi,et al.  Chemical Modification of the Structures and Functions of Proteins by the Cofactor Reconstitution Method , 1999 .

[49]  Huimin Zhao,et al.  Recent advances in biocatalysis by directed enzyme evolution. , 2006, Combinatorial chemistry & high throughput screening.

[50]  Gerard Roelfes,et al.  DNA-based asymmetric catalysis. , 2005, Angewandte Chemie.

[51]  M. T. Reetz,et al.  Kombinatorische und evolutionsgesteuerte Methoden zur Bildung enantioselektiver Katalysatoren , 2001 .

[52]  E. Kaiser Katalytische Aktivität von Enzymen mit modifiziertem aktivem Zentrum , 1988 .

[53]  Eric N. Jacobsen,et al.  Comprehensive asymmetric catalysis , 1999 .

[54]  M. Reetz,et al.  Binol-derived monodentate phosphites and phosphoramidites with phosphorus stereogenic centers: novel ligands for transition-metal catalysis. , 2005, Angewandte Chemie.

[55]  Yi Lu,et al.  Engineering novel metalloproteins: design of metal-binding sites into native protein scaffolds. , 2001, Chemical reviews.

[56]  Keith A. Powell,et al.  Directed Evolution and Biocatalysis. , 2001, Angewandte Chemie.

[57]  K. Sharpless,et al.  Auf der Suche nach neuer Reaktivität (Nobel-Vortrag) , 2002 .

[58]  D. Hilvert,et al.  Semisynthetic enzymes: design of flavin-dependent oxidoreductases. , 1987, Biotechnology & genetic engineering reviews.

[59]  M. Reetz Strategies for the development of enantioselective catalysts , 1999 .

[60]  E. Kaiser Catalytic Activity of Enzymes Altered at Their Active Sites , 1988 .

[61]  J. D. de Vries,et al.  The combinatorial approach to asymmetric hydrogenation: phosphoramidite libraries, ruthenacycles, and artificial enzymes. , 2006, Chemistry.

[62]  K. Sharpless,et al.  Searching for new reactivity (Nobel lecture). , 2002, Angewandte Chemie.

[63]  R. Kazlauskas,et al.  Molecular modeling and biocatalysis: explanations, predictions, limitations, and opportunities. , 2000, Current opinion in chemical biology.

[64]  Manfred T. Reetz,et al.  Towards the directed evolution of hybrid catalysts , 2002 .

[65]  Thomas J. Meyer,et al.  Comprehensive Coordination Chemistry II , 2004 .

[66]  Donald Hilvert,et al.  Investigating and Engineering Enzymes by Genetic Selection. , 2001, Angewandte Chemie.

[67]  Manfred T. Reetz,et al.  Directed Evolution of an Enantioselective Enzyme through Combinatorial Multiple-Cassette Mutagenesis. , 2001, Angewandte Chemie.

[68]  W. Knowles Asymmetric hydrogenations (Nobel lecture). , 2002, Angewandte Chemie.

[69]  I. G. Kamphuis,et al.  Structure of papain refined at 1.65 A resolution. , 1984, Journal of molecular biology.

[70]  D. Rich,et al.  Alkylating derivatives of amino acids and peptides. Synthesis of N-maleoylamino acids, [1-(N-maleoylglycyl)cysteinyl]oxytocin, and [1-(N-maleoyl-11-aminoundecanoyl)cysteinyl]oxytocin. Effects on vasopressin-stimulated water loss from isolated toad bladder , 1975 .

[71]  P. Barker,et al.  Designing redox metalloproteins from bottom-up and top-down perspectives. , 2003, Current opinion in structural biology.

[72]  Andrea Zocchi,et al.  Artificial metalloenzymes for enantioselective catalysis based on biotin-avidin. , 2003, Journal of the American Chemical Society.

[73]  Riedl,et al.  Combinatorial de novo synthesis of catalysts: how much of a hit-structure is needed for activity? , 2000, Journal of combinatorial chemistry.

[74]  C. Gennari,et al.  Combinatorial libraries of chiral ligands for enantioselective catalysis. , 2003, Chemical reviews.

[75]  W. Herrmann,et al.  Aqueous-Phase Organometallic Catalysis: Concepts and Applications , 2005 .

[76]  Marc Ostermeier,et al.  Mathematical expressions useful in the construction, description and evaluation of protein libraries. , 2005, Biomolecular engineering.

[77]  M. Reetz Combinatorial and Evolution-Based Methods in the Creation of Enantioselective Catalysts. , 2001, Angewandte Chemie.

[78]  M. Reetz,et al.  Mixtures of configurationally stable and fluxional atropisomeric monodentate P ligands in asymmetric Rh-catalyzed olefin hydrogenation. , 2005, Angewandte Chemie.

[79]  M. Reetz,et al.  Extending the concept of mixtures of chiral monodentate P-ligands in asymmetric Rh-catalyzed olefin-hydrogenation: Use of oxazaphospholidines , 2006 .

[80]  M. T. Reetz,et al.  Gerichtete Evolution eines enantioselektiven Enzyms durch kombinatorische multiple Kassetten‐Mutagenese , 2001 .

[81]  Yi Lu,et al.  Design and engineering of metalloproteins containing unnatural amino acids or non-native metal-containing cofactors. , 2005, Current opinion in chemical biology.

[82]  K. A. Powell,et al.  Gerichtete Evolution und Biokatalyse , 2001 .

[83]  C. Craik,et al.  Engineering enzyme specificity. , 1998, Current opinion in chemical biology.

[84]  Walter Thiel,et al.  Learning from Directed Evolution: Further Lessons from Theoretical Investigations into Cooperative Mutations in Lipase Enantioselectivity , 2007, Chembiochem : a European journal of chemical biology.

[85]  Andreas Schwienhorst,et al.  Evolutionary methods in biotechnology : clever tricks for directed evolution , 2004 .

[86]  J. B. Jones,et al.  Expanded structural and stereospecificity in peptide synthesis with chemically modified mutants of subtilisin , 1999 .

[87]  B. List Proline-catalyzed asymmetric reactions , 2002 .

[88]  S. Bräse,et al.  Combinatorial Methods for the Discovery and Optimisation of Homogeneous Catalysts , 2004 .

[89]  M. Distefano,et al.  Generation of new enzymes via covalent modification of existing proteins. , 2001, Chemical reviews.

[90]  T. Ward Artificial metalloenzymes for enantioselective catalysis based on the noncovalent incorporation of organometallic moieties in a host protein. , 2005, Chemistry.

[91]  Sau-Ching Wu,et al.  Secretory production and purification of functional full-length streptavidin from Bacillus subtilis. , 2002, Protein expression and purification.

[92]  Detlev Belder,et al.  Enantioselective catalysis and analysis on a chip. , 2006, Angewandte Chemie.

[93]  Eric N. Jacobsen,et al.  Polymer-Supported Chiral Co(Salen) Complexes: Synthetic Applications and Mechanistic Investigations in the Hydrolytic Kinetic Resolution of Terminal Epoxides , 1999 .

[94]  K. Janda,et al.  A cofactor approach to copper-dependent catalytic antibodies , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[95]  K. Kobayashi,et al.  Physicochemical and immunochemical properties of recombinant human serum albumin from Pichia pastoris. , 1998, Analytical biochemistry.

[96]  A. Mahammed,et al.  Albumin-conjugated corrole metal complexes: extremely simple yet very efficient biomimetic oxidation systems. , 2005, Journal of the American Chemical Society.

[97]  W. Thiel,et al.  Learning from Directed Evolution: Theoretical Investigations into Cooperative Mutations in Lipase Enantioselectivity , 2004, Chembiochem : a European journal of chemical biology.

[98]  B. G. Davis Chemical modification of biocatalysts. , 2003, Current opinion in biotechnology.

[99]  M. Ratner,et al.  Synthesis and electrochemical characterization of a transition-metal-modified ligand-receptor pair. , 2005, Journal of the American Chemical Society.

[100]  Andreas Vogel,et al.  Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. , 2006, Angewandte Chemie.

[101]  Manfred T. Reetz,et al.  Creation of Enantioselective Biocatalysts for Organic Chemistry by In Vitro Evolution , 1997 .

[102]  F. Studier,et al.  Protein production by auto-induction in high density shaking cultures. , 2005, Protein expression and purification.

[103]  R D Schmid,et al.  Rational evolution of a medium chain-specific cytochrome P-450 BM-3 variant. , 2001, Biochimica et biophysica acta.

[104]  M. Wilchek,et al.  Isolation and properties of streptavidin. , 1990, Methods in enzymology.

[105]  Karlheinz Drauz,et al.  Enzyme Catalysis in Organic Synthesis: A Comprehensive Handbook: Vol. 1 J. Am. Chem. Soc. 1996, 118, 11340 , 1997 .

[106]  A. Sidoli,et al.  Production of a soluble and functional recombinant streptavidin in Escherichia coli. , 1998, Protein expression and purification.

[107]  L. Polgár,et al.  A New Enzyme Containing a Synthetically Formed Active Site. Thiol-Subtilisin1 , 1966 .

[108]  L. Thompson,et al.  Construction and expression of a synthetic streptavidin-encoding gene in Escherichia coli. , 1993, Gene.

[109]  Johannes G. de Vries,et al.  The Power of High-Throughput Experimentation in Homogeneous Catalysis Research for Fine Chemicals , 2003 .

[110]  A. Ménez,et al.  Tailoring new enzyme functions by rational redesign. , 2000, Current opinion in structural biology.

[111]  H. Gray,et al.  Amphiphilic corroles bind tightly to human serum albumin. , 2004, Bioconjugate chemistry.

[112]  M. T. Reetz Neue Methoden für das Hochdurchsatz-Screening von enantioselektiven Katalysatoren und Biokatalysatoren , 2002 .

[113]  C. Cantor,et al.  Expression of a cloned streptavidin gene in Escherichia coli. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[114]  M. Francis,et al.  Discovery of Novel Catalysts for Alkene Epoxidation from Metal-Binding Combinatorial Libraries. , 1999, Angewandte Chemie.

[115]  T. Peters,et al.  All About Albumin: Biochemistry, Genetics, and Medical Applications , 1995 .

[116]  Ryoji Noyori,et al.  Asymmetric catalysis: science and opportunities (Nobel lecture). , 2002, Angewandte Chemie.

[117]  G. Whitesides,et al.  Synthesis of Functional Chelating Diphosphines Containing the Bis[2-(diphenylphosphino)ethyl]amino Moiety and the Use of These Materials in the Preparation of Water-Soluble Diphosphine Complexes of Transition Metals , 1981 .

[118]  Kai Johnsson,et al.  Directed Molecular Evolution of Proteins or How to Improve Enzymes for Biocatalysis , 2002 .

[119]  George M. Whitesides,et al.  Conversion of a protein to a homogeneous asymmetric hydrogenation catalyst by site-specific modification with a diphosphinerhodium(I) moiety , 1978 .

[120]  Wayne M Patrick,et al.  Strategies and computational tools for improving randomized protein libraries. , 2005, Biomolecular engineering.

[121]  M. Reetz,et al.  Mixtures of monodentate P-ligands as a means to control the diastereoselectivity in Rh-catalyzed hydrogenation of chiral alkenes , 2005, Beilstein journal of organic chemistry.

[122]  Manfred T Reetz,et al.  Directed evolution of hybrid enzymes: Evolving enantioselectivity of an achiral Rh-complex anchored to a protein. , 2006, Chemical communications.

[123]  A. Klibanov Improving enzymes by using them in organic solvents , 2001, Nature.