Gradient estimates for the p (x)-Laplacean system

Abstract We prove Calderón and Zygmund type estimates for a class of elliptic problems whose model is the non-homogeneous p (x )-Laplacean system Under optimal continuity assumptions on the function p (x ) > 1 we prove that Our estimates are motivated by recent developments in non-Newtonian fluidmechanics and elliptic problems with non-standard growth conditions, and are the natural, ‘‘non-linear’’ counterpart of those obtained by Diening and Růžička [L. Diening and M. Růžička, Calderón-Zygmund operators on generalized Lebesgue spaces L p (‧) and problems related to fluid dynamics, J. reine angew. Math. 563 (2003), 197–220] in the linear case.

[1]  M. Rao,et al.  Theory of Orlicz spaces , 1991 .

[2]  B. Dacorogna Direct methods in the calculus of variations , 1989 .

[3]  Giuseppe Mingione,et al.  Regularity Results for a Class of Functionals with Non-Standard Growth , 2001 .

[4]  N. Fusco,et al.  Hölder Continuity of Local Minimizers , 1999 .

[5]  J. Manfredi Regularity for minima of functionals with p-growth , 1988 .

[6]  M. Ružička,et al.  Mathematical modeling of electrorheological materials , 2001 .

[7]  O. Martio,et al.  Fuglede's theorem in variable exponent Sobolev space , 2004 .

[8]  M. Růžička Flow of shear dependent electrorheological fluids , 1999 .

[9]  D. Cruz-Uribe,et al.  The maximal function on variable spaces. , 2003 .

[10]  P. Koskela,et al.  Mappings of BMO–bounded distortion , 2000 .

[11]  L. Caffarelli Interior a priori estimates for solutions of fully non-linear equations , 1989 .

[12]  Jiří Rákosník,et al.  Sobolev embeddings with variable exponent , 2000 .

[13]  J. Kinnunen,et al.  A Local estimate for nonlinear equations with discontinuous coefficients , 1999 .

[14]  T. Iwaniec The Gehring Lemma , 1998 .

[15]  Giuseppe Mingione,et al.  Regularity Results for Stationary Electro-Rheological Fluids , 2002 .

[16]  Tadeusz Iwaniec,et al.  $p$-harmonic tensors and quasiregular mappings , 1992 .

[17]  T. Iwaniec Projections onto gradient fields and $L^{p}$-estimates for degenerated elliptic operators , 1983 .

[18]  T. Iwaniec,et al.  Analytical foundations of the theory of quasiconformal mappings in R^n , 1983 .

[19]  L. Diening,et al.  Calderón-Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot)}$ and problems related to fluid dynamics , 2003 .

[20]  Paolo Marcellini Regularity and existence of solutions of elliptic equations with p,q-growth conditions , 1991 .

[21]  Karen K. Uhlenbeck Regularity for a class of non-linear elliptic systems , 1977 .

[22]  M. Ruzicka,et al.  Electrorheological Fluids: Modeling and Mathematical Theory , 2000 .

[23]  M. Ruzicka,et al.  An example of a space Lp(x) on which the Hardy-Littlewood maximal operator is not bounded , 2001 .

[24]  E. Acerbi,et al.  Regularity results for parabolic systems related to a class of non-Newtonian fluids , 2004 .

[25]  V. Zhikov,et al.  AVERAGING OF FUNCTIONALS OF THE CALCULUS OF VARIATIONS AND ELASTICITY THEORY , 1987 .

[26]  G. Mingione,et al.  Higher Integrability for Minimizers of Integral Functionals With (p, q) Growth , 1999 .

[27]  L. Caffarelli,et al.  On W1,p estimates for elliptic equations in divergence form , 1998 .

[28]  T. Iwaniec,et al.  On the Operator L(f)=f log |f| , 1999 .

[29]  N. Fusco,et al.  Regularity for Minimizers of Non-quadratic Functionals: The Case 1 , 1989 .

[30]  Giuseppe Mingione,et al.  Hölder continuity of the gradient of p(x)-harmonic mappings , 1999 .

[31]  L. Diening,et al.  Integral operators on the halfspace in generalized Lebesgue spaces Lp(.), part II , 2004 .

[32]  Zhikov On Lavrentiev's Phenomenon. , 1995 .

[33]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .