SMAD6-deficiency in human genetic disorders

[1]  Yongjia Yang,et al.  A genotype and phenotype analysis of SMAD6 mutant patients with radioulnar synostosis , 2021, Molecular genetics & genomic medicine.

[2]  Shantum Misra,et al.  Thoracic Aortic Aneurysm: A Clinical Review. , 2021, Cardiology clinics.

[3]  J. Seidman,et al.  Genomic frontiers in congenital heart disease , 2021, Nature Reviews Cardiology.

[4]  M. Bronner,et al.  Essential function and targets of BMP signaling during midbrain neural crest delamination. , 2021, Developmental biology.

[5]  A. Landstrom,et al.  Genetic Etiology of Left‐Sided Obstructive Heart Lesions: A Story in Development , 2021, Journal of the American Heart Association.

[6]  Zhousheng Xiao,et al.  Recent Advances of Osterix Transcription Factor in Osteoblast Differentiation and Bone Formation , 2020, Frontiers in Cell and Developmental Biology.

[7]  I. Mathijssen Introduction to Updated Guideline on Treatment and Management of Craniosynostosis , 2020, The Journal of craniofacial surgery.

[8]  N. Hatch,et al.  Cranial Neural Crest Cells and Their Role in the Pathogenesis of Craniofacial Anomalies and Coronal Craniosynostosis , 2020, Journal of developmental biology.

[9]  W. Lattanzi,et al.  SMAD6 variants in craniosynostosis: genotype and phenotype evaluation , 2020, Genetics in Medicine.

[10]  Jeremy A. Sabourin,et al.  A genome-wide association study implicates the BMP7 locus as a risk factor for nonsyndromic metopic craniosynostosis , 2020, Human Genetics.

[11]  A. Pierini,et al.  Prenatal diagnosis and prevalence of critical congenital heart defects: an international retrospective cohort study , 2019, BMJ Open.

[12]  Liping Li,et al.  SMAD6 is frequently mutated in nonsyndromic radioulnar synostosis , 2019, Genetics in Medicine.

[13]  K. Kutsche,et al.  Biallelic variants in SMAD6 are associated with a complex cardiovascular phenotype , 2019, Human Genetics.

[14]  Jiu-hui Han,et al.  Efficacy and feasibility of proximal radioulnar derotational osteotomy and internal fixation for the treatment of congenital radioulnar synostosis , 2019, Journal of Orthopaedic Surgery and Research.

[15]  P. Rao,et al.  Management of Congenital Heart Disease: State of the Art—Part II—Cyanotic Heart Defects , 2019, Children.

[16]  S. Park,et al.  A novel SMAD6 variant in a patient with severely calcified bicuspid aortic valve and thoracic aortic aneurysm , 2019, Molecular genetics & genomic medicine.

[17]  P. Rao,et al.  Management of Congenital Heart Disease: State of the Art; Part I—ACYANOTIC Heart Defects , 2019, Children.

[18]  A. Hoischen,et al.  Confirmation of the role of pathogenic SMAD6 variants in bicuspid aortic valve-related aortopathy , 2019, European Journal of Human Genetics.

[19]  L. Zühlke,et al.  Global birth prevalence of congenital heart defects 1970–2017: updated systematic review and meta-analysis of 260 studies , 2019, International journal of epidemiology.

[20]  J. Kovacic,et al.  Endothelial to Mesenchymal Transition in Cardiovascular Disease: JACC State-of-the-Art Review. , 2019, Journal of the American College of Cardiology.

[21]  Jeffrey M. Vinocur,et al.  Mortality Following Pediatric Congenital Heart Surgery: An Analysis of the Causes of Death Derived From the National Death Index , 2018, Journal of the American Heart Association.

[22]  Russell A. Gould,et al.  ROBO4 Variants Predispose Individuals to Bicuspid Aortic Valve and Thoracic Aortic Aneurysm , 2018, Nature Genetics.

[23]  K. Eagle,et al.  Cardiovascular Health in Turner Syndrome: A Scientific Statement From the American Heart Association. , 2018, Circulation. Genomic and precision medicine.

[24]  Diana C. Chong,et al.  Developmental SMAD6 loss leads to blood vessel hemorrhage and disrupted endothelial cell junctions. , 2018, Developmental biology.

[25]  J. Goos,et al.  Genetic Causes of Craniosynostosis: An Update , 2018, Molecular Syndromology.

[26]  J. Persing,et al.  Genetics of Nonsyndromic Craniosynostosis. , 2018, Plastic and reconstructive surgery.

[27]  P. Tylzanowski,et al.  Cooperation of BMP and IHH signaling in interdigital cell fate determination , 2018, PloS one.

[28]  Yufeng Shen,et al.  Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands , 2017, Nature Genetics.

[29]  R. Lifton,et al.  De novo mutations in inhibitors of Wnt, BMP, and Ras/ERK signaling pathways in non-syndromic midline craniosynostosis , 2017, Proceedings of the National Academy of Sciences.

[30]  Emmanuel Messas,et al.  Candidate Gene Resequencing in a Large Bicuspid Aortic Valve-Associated Thoracic Aortic Aneurysm Cohort: SMAD6 as an Important Contributor , 2017, Front. Physiol..

[31]  J. Tsai Congenital radioulnar synostosis , 2017, Radiology case reports.

[32]  B. Loeys,et al.  Aetiology and management of hereditary aortopathy , 2017, Nature Reviews Cardiology.

[33]  K. Miyazono,et al.  Regulation of TGF-β Family Signaling by Inhibitory Smads. , 2017, Cold Spring Harbor perspectives in biology.

[34]  Hongyu Zhao,et al.  Two locus inheritance of non-syndromic midline craniosynostosis via rare SMAD6 and common BMP2 alleles , 2016, eLife.

[35]  C. Zamora,et al.  Loeys-Dietz syndrome. , 2016, Neurology India.

[36]  K. Yutzey,et al.  Bone Morphogenetic Protein Signaling Is Required for Aortic Valve Calcification , 2016, Arteriosclerosis, thrombosis, and vascular biology.

[37]  J. Shendure,et al.  LOX Mutations Predispose to Thoracic Aortic Aneurysms and Dissections. , 2016, Circulation research.

[38]  S. Twigg,et al.  A Genetic-Pathophysiological Framework for Craniosynostosis. , 2015, American journal of human genetics.

[39]  E. Ahn,et al.  The Importance of Timing in Optimizing Cranial Vault Remodeling in Syndromic Craniosynostosis , 2015, Plastic and reconstructive surgery.

[40]  S. Vollset,et al.  Birth prevalence of congenital heart defects in Norway 1994-2009--a nationwide study. , 2014, American heart journal.

[41]  D. Medici,et al.  Signaling mechanisms of the epithelial-mesenchymal transition , 2014, Science Signaling.

[42]  R. Haydon,et al.  Bone Morphogenetic Protein (BMP) signaling in development and human diseases , 2014, Genes & diseases.

[43]  K. McBride,et al.  Rare GATA5 sequence variants identified in individuals with bicuspid aortic valve , 2014, Pediatric Research.

[44]  Lei Xu,et al.  GATA5 loss-of-function mutations associated with congenital bicuspid aortic valve. , 2014, International journal of molecular medicine.

[45]  P. Hoodless,et al.  Co-ordinating Notch, BMP, and TGF-β signaling during heart valve development , 2012, Cellular and Molecular Life Sciences.

[46]  Y. Mishina,et al.  Augmentation of smad‐dependent BMP signaling in neural crest cells causes craniosynostosis in mice , 2013, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[47]  Alexander F. Wilson,et al.  A genome-wide association study identifies susceptibility loci for nonsyndromic sagittal craniosynostosis near BMP2 and within BBS9 , 2012, Nature Genetics.

[48]  Seneca L. Bessling,et al.  Mutations in the TGF-β Repressor SKI Cause Shprintzen-Goldberg Syndrome with Aortic Aneurysm , 2012, Nature Genetics.

[49]  R. Harvey,et al.  Congenital heart disease: current knowledge about causes and inheritance , 2012, The Medical journal of Australia.

[50]  B. Keavney,et al.  Nonsynonymous variants in the SMAD6 gene predispose to congenital cardiovascular malformation , 2012, Human mutation.

[51]  K. Retting,et al.  Smad6 is essential to limit BMP signaling during cartilage development , 2011, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[52]  Jun Wang,et al.  BMP signaling in congenital heart disease: new developments and future directions. , 2011, Birth defects research. Part A, Clinical and molecular teratology.

[53]  M. Khokha,et al.  Cooperative activity of noggin and gremlin 1 in axial skeleton development , 2011, Development.

[54]  R. Huang,et al.  Epithelial-Mesenchymal Transitions in Development and Disease , 2009, Cell.

[55]  Raghu Kalluri,et al.  The basics of epithelial-mesenchymal transition. , 2009, The Journal of clinical investigation.

[56]  Robert K. Yu,et al.  Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and Moyamoya disease, along with thoracic aortic disease. , 2009, American journal of human genetics.

[57]  Lisa J. Martin,et al.  Hypoplastic left heart syndrome links to chromosomes 10q and 6q and is genetically related to bicuspid aortic valve. , 2009, Journal of the American College of Cardiology.

[58]  S. Rasmussen,et al.  A population‐based study of craniosynostosis in metropolitan Atlanta, 1989–2003 , 2008, American journal of medical genetics. Part A.

[59]  K. Miyazono,et al.  Selective Inhibitory Effects of Smad6 on Bone Morphogenetic Protein Type I Receptors* , 2007, Journal of Biological Chemistry.

[60]  H. Roca,et al.  BMP Signaling Is Required for RUNX2‐Dependent Induction of the Osteoblast Phenotype , 2006, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[61]  G. Perna,et al.  Aortic dilatation in patients with bicuspid aortic valve , 2006, Journal of cardiovascular medicine.

[62]  D. Bush,et al.  A Case of Hypoplastic Left Heart Syndrome and Bicuspid Aortic Valve in Monochorionic Twins , 2005, Pediatric Cardiology.

[63]  D. Srivastava,et al.  Mutations in NOTCH1 cause aortic valve disease , 2005, Nature.

[64]  M. Moon,et al.  The bicuspid aortic valve. , 2005, Current problems in cardiology.

[65]  S. Leal,et al.  Inheritance analysis of congenital left ventricular outflow tract obstruction malformations: Segregation, multiplex relative risk, and heritability , 2005, American journal of medical genetics. Part A.

[66]  H. Moses,et al.  Activin receptor-like kinase 2 and Smad6 regulate epithelial-mesenchymal transformation during cardiac valve formation. , 2005, Developmental biology.

[67]  Ying E. Zhang,et al.  Smad-dependent and Smad-independent pathways in TGF-β family signalling , 2003, Nature.

[68]  E. Délot,et al.  Control of endocardial cushion and cardiac valve maturation by BMP signaling pathways. , 2003, Molecular genetics and metabolism.

[69]  R. Akhurst,et al.  Genetic modifiers interact with maternal determinants in vascular development of Tgfb1(-/-) mice. , 2003, Human molecular genetics.

[70]  T. Yoneda,et al.  The role of Smads in BMP signaling. , 2003, Frontiers in bioscience : a journal and virtual library.

[71]  M. Gimbrone,et al.  A role for Smad6 in development and homeostasis of the cardiovascular system , 2000, Nature Genetics.

[72]  R J Schwartz,et al.  Evidence for a role of Smad6 in chick cardiac development. , 1999, Developmental biology.

[73]  Yigong Shi,et al.  The L3 loop: a structural motif determining specific interactions between SMAD proteins and TGF‐β receptors , 1998, The EMBO journal.

[74]  J. Massagué,et al.  Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. , 1998, Genes & development.

[75]  M. Farrall,et al.  Mapping of a major genetic modifier of embryonic lethality in TGFβ1 knockout mice , 1997, Nature Genetics.

[76]  J. Opitz,et al.  Autosomal dominant and sporadic radio-ulnar synostosis. , 1997, American journal of medical genetics.

[77]  C. Bonaïti‐pellié,et al.  Genetic study of nonsyndromic coronal craniosynostosis. , 1995, American journal of medical genetics.

[78]  C. Stonehouse The Second Heart , 1994 .

[79]  E. Jabs,et al.  A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis , 1993, Cell.

[80]  R. Spritz Familial radioulnar synostosis. , 1978, Journal of medical genetics.

[81]  G. Fraedrich,et al.  Juvenile recurrent respiratory papillomatosis: Still a mystery disease with difficult management , 2007, Head & neck.

[82]  R. Serra,et al.  Development of the axial skeleton and intervertebral disc. , 2019, Current topics in developmental biology.

[83]  M. Goumans,et al.  Bone Morphogenetic Proteins in Vascular Homeostasis and Disease. , 2018, Cold Spring Harbor perspectives in biology.

[84]  A. Moustakas,et al.  TGF-β Family Signaling in Epithelial Differentiation and Epithelial-Mesenchymal Transition. , 2018, Cold Spring Harbor perspectives in biology.

[85]  C. Ruhrberg,et al.  Neural crest cells in cardiovascular development. , 2015, Current topics in developmental biology.

[86]  Frank J Criado,et al.  Aortic dissection: a 250-year perspective. , 2011, Texas Heart Institute journal.

[87]  D. Logan,et al.  Epistatic interactions between modifier genes confer strain-specific redundancy for Tgfb1 in developmental angiogenesis. , 2005, Genomics.

[88]  R. Derynck,et al.  Smad-dependent and Smad-independent pathways in TGF-beta family signalling. , 2003, Nature.

[89]  E. Green,et al.  Mutations in TWIST, a basic helix–loop–helix transcription factor, in Saethre-Chotzen syndrome , 1997, Nature Genetics.

[90]  P. Bénit,et al.  Mutations of the TWIST gene in the Saethre-Chotzene syndrome , 1997, Nature Genetics.

[91]  D. Brodersen,et al.  Y aneuploidy: a further case of a male patient with a 48,XYYY karyotype and literature review. , 1992, Annales de genetique.

[92]  K. Johnson An Update. , 1984, Journal of food protection.

[93]  P. Freedson,et al.  Scientific Statement From the American Heart Association Guide to the Assessment of Physical Activity: Clinical and Research Applications: A , 2015 .