2- $\mu$ m Free-Space Data Transmission Based on an Actively Mode-Locked Holmium-Doped Fiber Laser

We experimentally demonstrate a 2-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> free-space data transmission system in a simulated atmospheric turbulent device with an actively mode-locked holmium-doped fiber laser. The central wavelength can be adjusted from 2035.6 nm to 2050.2 nm with optional repetition rates of 1.01 GHz and 2.02 GHz, respectively, and the pulse is stabilized by adding a fiber Fabry-Perot filter in the laser cavity. The pulse sequence can be modulated by a digital signal and transmitted in a tunable simulated atmospheric turbulent channel. Compared with back-to-back (BTB), the optical signal-to-noise ratio (OSNR) of 2-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> laser carrier reduces from 15.04 dB to 6.67 dB under the condition of <inline-formula> <tex-math notation="LaTeX">$\text{C}_{\mathrm {n}}^{2}=5.71 \times 10^{-16}\text{m}^{-2/3}$ </tex-math></inline-formula>, and the received power jitter increases from ±0.04 dB to ±0.74 dB. The sensitivity of the 2-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> data transmission system is −19.52 dBm. In addition, we compare the average receiving power standard deviation and power penalty between the 2-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> laser and a 1.55-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> laser under the same propagation conditions. The experimental results demonstrate that the 2-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> laser communication system realizes superior performance in a weak turbulent channel.

[1]  Huilin Jiang,et al.  128 Gbit/s Free-Space Laser Transmission Performance in a Simulated Atmosphere Channel With Adjusted Turbulence , 2018, IEEE Photonics Journal.

[2]  F. Ouellette,et al.  Gain-Switched Dual-Waveband Ho3+-Doped Fluoride Fiber Laser Based on Hybrid Pumping , 2019, IEEE Photonics Technology Letters.

[3]  Swee Chuan Tjin,et al.  Double-ring cavity configuration of actively mode-locked multi-wavelength fiber laser with equally tunable wavelength spacing , 2005 .

[4]  L. Mollenauer,et al.  Harmonically mode-locked fiber ring laser with an internal Fabry-Perot stabilizer for soliton transmission. , 1993, Optics letters.

[5]  Yuefeng Ji,et al.  Supermode noise suppression in an actively mode-locked fiber laser with pulse intensity feed-forward and a dual-drive MZM , 2013 .

[6]  A. Danicic,et al.  Widely-tunable parametric short-wave infrared transmitter for CO2 trace detection. , 2011, Optics express.

[7]  S. Gee,et al.  Simultaneous optical comb frequency stabilization and super-mode noise suppression of harmonically mode-locked semiconductor ring laser using an intracavity etalon , 2005, IEEE Photonics Technology Letters.

[8]  Masataka Nakazawa,et al.  Single-channel 10.2 Tbit/s (2.56 Tbaud) optical Nyquist pulse transmission over 300 km. , 2018, Optics express.

[9]  Yasutake Ohishi,et al.  Holmium-doped fluorotellurite microstructured fibers for 2.1 μm lasing. , 2015, Optics letters.

[10]  Masatoshi Saruwatari,et al.  Generation of highly stable 20 GHz transform-limited optical pulses from actively mode-locked Er/sup 3+/-doped fibre lasers with an all-polarisation maintaining ring cavity , 1992 .

[11]  Peter J. Delfyett,et al.  Ultralow noise and supermode suppression in an actively mode-locked external-cavity semiconductor diode ring laser. , 2002 .

[12]  Junda Chen,et al.  Scintillation index reducing based on wide-spectral mode-locking fiber laser carriers in a simulated atmospheric turbulent channel. , 2018, Optics letters.

[13]  Kaiming Zhou,et al.  Mid-infrared passively switched pulsed dual wavelength Ho3+-doped fluoride fiber laser at 3 μm and 2 μm , 2015, Scientific Reports.

[14]  Masataka Nakazawa,et al.  Ultrahigh-speed "orthogonal" TDM transmission with an optical Nyquist pulse train. , 2012, Optics express.

[15]  Fengqiu Wang,et al.  2- $\mu$ m Repetition-Rate Tunable (1–6 GHz) Picosecond Source , 2017, IEEE Photonics Technology Letters.

[16]  Huilin Jiang,et al.  Free-space transmission system in a tunable simulated atmospheric turbulence channel using a high-repetition-rate broadband fiber laser. , 2019, Applied optics.