Laser Absorption Sensing Systems: Challenges, Modeling, and Design Optimization

Laser absorption spectroscopy (LAS) is a promising diagnostic method capable of providing high-bandwidth, species-specific sensing, and highly quantitative measurements. This review aims at providing general guidelines from the perspective of LAS sensor system design for realizing quantitative species diagnostics in combustion-related environments. A brief overview of representative detection limits and bandwidths achieved in different measurement scenarios is first provided to understand measurement needs and identify design targets. Different measurement schemes including direct absorption spectroscopy (DAS), wavelength modulation spectroscopy (WMS), and their variations are discussed and compared in terms of advantages and limitations. Based on the analysis of the major sources of noise including electronic, optical, and environmental noises, strategies of noise reduction and design optimization are categorized and compared. This addresses various means of laser control parameter optimization and data processing algorithms such as baseline extraction, in situ laser characterization, and wavelet analysis. There is still a large gap between the current sensor capabilities and the demands of combustion and engine diagnostic research. This calls for a profound understanding of the underlying fundamentals of a LAS sensing system in terms of optics, spectroscopy, and signal processing.

[1]  Benli Yu,et al.  A Review of Signal Enhancement and Noise Reduction Techniques for Tunable Diode Laser Absorption Spectroscopy , 2014 .

[2]  Juergen Wolfrum,et al.  Simultaneous laser-based in situ detection of oxygen and water in a waste incinerator for active combustion control purposes , 1998 .

[3]  Matthew A. Oehlschlaeger,et al.  A carbon monoxide and thermometry sensor based on mid-IR quantum-cascade laser wavelength-modulation absorption spectroscopy , 2011 .

[4]  Hong Duan,et al.  Harmonic wavelet analysis of modulated tunable diode laser absorption spectroscopy signals. , 2009, Applied optics.

[5]  W Johnstone,et al.  Recovery of Absolute Gas Absorption Line Shapes Using Tunable Diode Laser Spectroscopy With Wavelength Modulation—Part 2: Experimental Investigation , 2011, Journal of Lightwave Technology.

[6]  Volker Ebert,et al.  Sensitive in situ detection of CO and O2 in a rotary kiln-based hazardous waste incinerator using 760 nm and new 2.3 μm diode lasers , 2005 .

[7]  A. Upadhyay,et al.  Calibration-free 2f WMS with in situ real-time laser characterization and 2f RAM nulling. , 2015, Optics letters.

[8]  Francesco Mainardi,et al.  Evolution equations for the probabilistic generalization of the Voigt profile function , 2007, J. Comput. Appl. Math..

[9]  Ronald K. Hanson,et al.  Simultaneous sensing of temperature, CO, and CO2 in a scramjet combustor using quantum cascade laser absorption spectroscopy , 2014 .

[10]  Ronald K. Hanson,et al.  High-temperature iso-butene absorption diagnostic for shock tube kinetics using a pulsed quantum cascade laser near 11.3 μm , 2015 .

[11]  Mark P. Johnson,et al.  A New RAM Normalized 1$f$-WMS Technique for the Measurement of Gas Parameters in Harsh Environments and a Comparison With ${2f\!/\!1f}$ , 2018, IEEE Photonics Journal.

[12]  Ronald K. Hanson,et al.  Application of wavelength-scanned wavelength-modulation spectroscopy H2O absorption measurements in an engineering-scale high-pressure coal gasifier , 2014 .

[13]  S. Fleck,et al.  Infrared absorption spectrometer for the determination of temperature and species profiles in an entrained flow gasifier. , 2017, Applied optics.

[14]  Mikhail A. Bolshov,et al.  Tunable diode laser spectroscopy as a technique for combustion diagnostics , 2015 .

[15]  Ralph P. Tatam,et al.  Self-mixing interference effects in tunable diode laser absorption spectroscopy , 2009 .

[16]  B K Garside,et al.  High sensitivity pollution detection employing tunable diode lasers. , 1978, Applied optics.

[17]  Ramin Ghorbani,et al.  Calibration-free scanned wavelength modulation spectroscopy--application to H(2)O and temperature sensing in flames. , 2015, Optics express.

[18]  R. Hanson,et al.  Quantum cascade laser absorption sensor for carbon monoxide in high-pressure gases using wavelength modulation spectroscopy. , 2014, Applied optics.

[19]  R. Hanson,et al.  Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments. , 2009, Applied optics.

[20]  Lei Zhang,et al.  Calibration-free wavelength-modulation spectroscopy based on a swiftly determined wavelength-modulation frequency response function of a DFB laser. , 2016, Optics express.

[21]  M. Amann,et al.  Tunable diode laser spectroscopy with optimum wavelength scanning , 2010 .

[22]  Volker Ebert,et al.  Integrative fitting of absorption line profiles with high accuracy, robustness, and speed , 2014 .

[23]  A. Foltynowicz,et al.  Use of etalon-immune distances to reduce the influence of background signals in frequency-modulation spectroscopy and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy , 2014 .

[24]  Ronald K. Hanson,et al.  Measurement of Nonuniform Temperature Distributions Using Line-of-Sight Absorption Spectroscopy , 2007 .

[25]  U. Rascher,et al.  Distributed feedback diode laser spectrometer at 27 μm for sensitive, spatially resolved H_2O vapor detection , 2009 .

[26]  M. Lackner TUNABLE DIODE LASER ABSORPTION SPECTROSCOPY (TDLAS) IN THE PROCESS INDUSTRIES – A REVIEW , 2007 .

[27]  Xing Chao,et al.  Time-resolved in situ detection of CO in a shock tube using cavity-enhanced absorption spectroscopy with a quantum-cascade laser near 4.6 µm. , 2014, Optics express.

[28]  Pei-gao Han,et al.  Comparison and application of wavelet transform and Kalman filtering for denoising in δ13CO2 measurement by tunable diode laser absorption spectroscopy at 2.008 µm. , 2017, Optics express.

[29]  Christopher R. Webster,et al.  Brewster-plate spoiler: a novel method for reducing the amplitude of interference fringes that limit tunable-laser absorption sensitivities , 1985 .

[30]  Ronald K. Hanson,et al.  Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems , 2011 .

[31]  Yue Yan,et al.  In situ, multiparameter optical sensor for monitoring the selective catalytic reduction process of diesel engines , 2018, Sensors and Actuators B: Chemical.

[32]  Xuanbing Qiu,et al.  Etalon fringe removal of tunable diode laser multi-pass spectroscopy by wavelet transforms , 2018, Optical and Quantum Electronics.

[33]  Ronald K. Hanson,et al.  Infrared laser absorption sensors for multiple performance parameters in a detonation combustor , 2015 .

[34]  Sune Svanberg,et al.  Approach to optical interference fringes reduction in diode laser absorption spectroscopy , 2007 .

[35]  O. Axner,et al.  Characterization of background signals in wavelength-modulation spectrometry in terms of a fourier based theoretical formalism. , 2001, Applied optics.

[36]  Volker Ebert,et al.  Calibration-free, high-speed, in-cylinder laser absorption sensor for cycle-resolved, absolute H2O measurements in a production IC engine , 2015 .

[37]  P. DesJardin,et al.  Direct absorption spectroscopy baseline fitting for blended absorption features. , 2018, Applied optics.

[38]  Peng Zhimin,et al.  Odd harmonics with wavelength modulation spectroscopy for recovering gas absorbance shape. , 2012, Optics express.

[39]  Ronald K. Hanson,et al.  Measurements of spectral parameters of water-vapour transitions near 1388 and 1345 nm for accurate simulation of high-pressure absorption spectra , 2007 .

[40]  R. Tatam,et al.  Optical gas sensing: a review , 2012 .

[41]  Volker Ebert,et al.  Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers. , 2003, Applied optics.

[42]  J. A. Silver,et al.  Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser. , 1992, Applied optics.

[43]  Yu Wang,et al.  Signal analytical processing based on wavelet transform for tunable diode laser absorption spectroscopy , 2010, SPIE/COS Photonics Asia.

[44]  Tunable Diode Laser Spectroscopy. , 1989 .

[45]  R. Hanson,et al.  Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes. , 2014, Applied optics.

[46]  Katharina Kohse-Höinghaus,et al.  Quantum cascade laser-based MIR spectrometer for the determination of CO and $$\hbox {CO}_2$$CO2 concentrations and temperature in flames , 2015 .

[47]  A Fried,et al.  Tunable diode laser ratio measurements of atmospheric constituents by employing dual fitting analysis and jump scanning. , 1993, Applied optics.

[48]  R. Hanson,et al.  Hypersonic scramjet testing via TDLAS measurements of temperature and column density in a reflected shock tunnel , 2014 .

[49]  Ronald K. Hanson,et al.  Diode laser measurements of temperature-dependent collisional-narrowing and broadening parameters of Ar-perturbed H2O transitions at 1391.7 and 1397.8 nm , 2008 .

[50]  C. Sweeney,et al.  Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths , 2014, 1406.3326.

[51]  Volker Ebert,et al.  TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames , 2009 .

[52]  Jürgen Wolfrum,et al.  Lasers in combustion: From basic theory to practical devices , 1998 .

[53]  A. Dreizler,et al.  Robust, spatially scanning, open-path TDLAS hygrometer using retro-reflective foils for fast tomographic 2-D water vapor concentration field measurements , 2014 .

[54]  P. K. Falcone,et al.  Temperature measurement technique for high-temperature gases using a tunable diode laser. , 1978, Applied optics.

[55]  O. Axner,et al.  Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals. , 1999, Applied optics.

[56]  P. Werle,et al.  Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy. , 2004, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[57]  Ronald K. Hanson,et al.  Laser absorption diagnostic for measuring acetylene concentrations in shock tubes , 2014 .

[58]  Lin Ma,et al.  Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy. , 2009, Optics express.

[59]  M. Allen,et al.  Diode laser absorption sensors for gas-dynamic and combustion flows. , 1998, Measurement science & technology.

[60]  Volker Ebert,et al.  In situ TDLAS measurement of absolute acetylene concentration profiles in a non-premixed laminar counter-flow flame , 2012, Applied Physics B.

[61]  Ronald K. Hanson,et al.  Mid-infrared laser absorption spectroscopy of NO 2 at elevated temperatures , 2017 .

[62]  Robert P Lucht,et al.  Simultaneous high-speed gas property measurements at the exhaust gas recirculation cooler exit and at the turbocharger inlet of a multicylinder diesel engine using diode-laser-absorption spectroscopy. , 2015, Applied optics.

[63]  Benli Yu,et al.  Wavelet Transform Based on the Optimal Wavelet Pairs for Tunable Diode Laser Absorption Spectroscopy Signal Processing , 2015, Applied spectroscopy.

[64]  Ronald K. Hanson,et al.  High-bandwidth scanned-wavelength-modulation spectroscopy sensors for temperature and H2O in a rotating detonation engine , 2014 .

[65]  Y. Jamil,et al.  Recent advancements in spectroscopy using tunable diode lasers , 2013 .

[66]  G. Stewart,et al.  Recovery of Absolute Gas Absorption Line Shapes Using Tunable Diode Laser Spectroscopy With Wavelength Modulation—Part I: Theoretical Analysis , 2011, Journal of Lightwave Technology.

[67]  翟冰 Zhai Bing,et al.  Design and Realization of Harmonic Signal Orthogonal Lock-in Amplifier Used in Infrared Gas Detection , 2014 .

[68]  Yunfeng Bi,et al.  A background reduction method based on empirical mode decomposition for tunable diode laser absorption spectroscopy system , 2018 .

[69]  R. Hanson,et al.  High-sensitivity in situ QCLAS-based ammonia concentration sensor for high-temperature applications , 2016 .

[70]  Lijun Xu,et al.  Laser absorption spectroscopy for combustion diagnosis in reactive flows: A review , 2019 .

[71]  R. Hanson,et al.  Diode Laser Measurements of Temperature and H 2 O for Monitoring Pulse Detonation Combustor Performance , 2013 .

[72]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[73]  C Schulz,et al.  VCSEL-based, high-speed, in situ TDLAS for in-cylinder water vapor measurements in IC engines. , 2013, Optics express.

[74]  Ronald K. Hanson,et al.  Infrared laser-absorption sensing for combustion gases , 2017 .

[75]  G. Rieker,et al.  Resolving gas temperature distributions with single-beam dual-comb absorption spectroscopy , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[76]  G. Stewart,et al.  Calibration-Free WMS Using a cw-DFB-QCL, a VCSEL, and an Edge-Emitting DFB Laser With In-Situ Real-Time Laser Parameter Characterization , 2017, IEEE Photonics Journal.

[77]  Ronald K. Hanson,et al.  In situ absorption sensor for NO in combustion gases with a 5.2 μm quantum-cascade laser , 2011 .

[78]  J. K. Radhakrishnan,et al.  Validation of wavelength modulation spectroscopy techniques for oxygen concentration measurement , 2014 .

[79]  C. Kaminski,et al.  Tomographic absorption spectroscopy for the study of gas dynamics and reactive flows , 2017 .

[80]  Sukesh Roy,et al.  50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography. , 2013, Optics express.

[81]  Ronald K. Hanson,et al.  Fiber-coupled 2.7 µm laser absorption sensor for CO2 in harsh combustion environments , 2013 .

[82]  Ronald K. Hanson,et al.  Measurement of Non-uniform Temperature Distributions Using Line-of-sight Absorption Spectroscopy , 2006 .

[83]  R. Hanson,et al.  Diode-Laser Absorption Sensor for Line-of-Sight Gas Temperature Distributions. , 2001, Applied optics.

[84]  Yanjun Ding,et al.  Wavelength modulation spectroscopy for recovering absolute absorbance. , 2018, Optics express.

[85]  R. Hanson,et al.  Diode laser absorption measurements of CH(3)Cl and CH(4) near 1.65 microm. , 1997, Applied optics.

[86]  C. Schulz,et al.  High-speed tunable diode laser absorption spectroscopy for sampling-free in-cylinder water vapor concentration measurements in an optical IC engine , 2012 .

[87]  Peter Werle,et al.  A review of recent advances in semiconductor laser based gas monitors , 1998 .

[88]  Ronald K. Hanson,et al.  Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers , 2013 .

[89]  Xin Zhou,et al.  Diode laser absorption sensors for combustion control , 2005 .

[90]  Ralph P. Tatam,et al.  Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers. Part 1: single and dual pass cells , 2010 .

[91]  Zhenhui Du,et al.  Modulation index optimization for optical fringe suppression in wavelength modulation spectroscopy. , 2015, The Review of scientific instruments.

[92]  Peng Chen,et al.  TDLAS-WMS second harmonic detection based on spectral analysis. , 2018, The Review of scientific instruments.

[93]  Sukesh Roy,et al.  Measurements of multiple gas parameters in a pulsed-detonation combustor using time-division-multiplexed Fourier-domain mode-locked lasers. , 2013, Applied optics.

[94]  Brendan M. Quine,et al.  A simple interpolating algorithm for the rapid and accurate calculation of the Voigt function , 2009 .

[95]  Ronald K. Hanson,et al.  Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing , 2013 .

[96]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[97]  Gary Anderson,et al.  Noise estimation technique to reduce the effects of 1/f noise in Open Path Tunable Diode Laser Absorption Spectrometry (OP-TDLAS) , 2014, Sensing Technologies + Applications.

[98]  Bernhard Schmauss,et al.  Simulation-based comparison of noise effects in wavelength modulation spectroscopy and direct absorption TDLAS , 2010 .

[99]  Wright-Patterson Afb,et al.  High-Bandwidth H2O Absorption Sensor for Measuring Pressure, Enthalpy, and Mass Flux in a Pulsed-Detonation Combustor , 2012 .

[100]  Aamir Farooq,et al.  A mid-infrared absorption diagnostic for acetylene detection , 2015 .

[101]  Volker Ebert,et al.  Absolute, spatially resolved, in situ CO profiles in atmospheric laminar counter-flow diffusion flames using 2.3 μm TDLAS , 2012 .

[102]  Alexander Klein,et al.  Rapid, Time-Division Multiplexed, Direct Absorption- and Wavelength Modulation-Spectroscopy , 2014, Sensors.

[103]  Xiaotong Zhang,et al.  Mathematical Methods and Algorithms for Improving Near-Infrared Tunable Diode-Laser Absorption Spectroscopy , 2018, Sensors.

[104]  P. W. Werlea,et al.  Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy , 2004 .

[105]  Markus-Christian Amann,et al.  VCSEL-based calibration-free carbon monoxide sensor at 2.3 μm with in-line reference cell , 2011 .

[106]  Xing Chao,et al.  Sensitive and rapid laser diagnostic for shock tube kinetics studies using cavity-enhanced absorption spectroscopy. , 2014, Optics express.